MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smores Structured version   Visualization version   GIF version

Theorem smores 8367
Description: A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 16-Nov-2011.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
smores ((Smo 𝐴𝐵 ∈ dom 𝐴) → Smo (𝐴𝐵))

Proof of Theorem smores
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funres 6590 . . . . . . . 8 (Fun 𝐴 → Fun (𝐴𝐵))
2 funfn 6578 . . . . . . . 8 (Fun 𝐴𝐴 Fn dom 𝐴)
3 funfn 6578 . . . . . . . 8 (Fun (𝐴𝐵) ↔ (𝐴𝐵) Fn dom (𝐴𝐵))
41, 2, 33imtr3i 291 . . . . . . 7 (𝐴 Fn dom 𝐴 → (𝐴𝐵) Fn dom (𝐴𝐵))
5 resss 6005 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐴
65rnssi 5937 . . . . . . . 8 ran (𝐴𝐵) ⊆ ran 𝐴
7 sstr 3987 . . . . . . . 8 ((ran (𝐴𝐵) ⊆ ran 𝐴 ∧ ran 𝐴 ⊆ On) → ran (𝐴𝐵) ⊆ On)
86, 7mpan 689 . . . . . . 7 (ran 𝐴 ⊆ On → ran (𝐴𝐵) ⊆ On)
94, 8anim12i 612 . . . . . 6 ((𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ On) → ((𝐴𝐵) Fn dom (𝐴𝐵) ∧ ran (𝐴𝐵) ⊆ On))
10 df-f 6547 . . . . . 6 (𝐴:dom 𝐴⟶On ↔ (𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ On))
11 df-f 6547 . . . . . 6 ((𝐴𝐵):dom (𝐴𝐵)⟶On ↔ ((𝐴𝐵) Fn dom (𝐴𝐵) ∧ ran (𝐴𝐵) ⊆ On))
129, 10, 113imtr4i 292 . . . . 5 (𝐴:dom 𝐴⟶On → (𝐴𝐵):dom (𝐴𝐵)⟶On)
1312a1i 11 . . . 4 (𝐵 ∈ dom 𝐴 → (𝐴:dom 𝐴⟶On → (𝐴𝐵):dom (𝐴𝐵)⟶On))
14 ordelord 6386 . . . . . . 7 ((Ord dom 𝐴𝐵 ∈ dom 𝐴) → Ord 𝐵)
1514expcom 413 . . . . . 6 (𝐵 ∈ dom 𝐴 → (Ord dom 𝐴 → Ord 𝐵))
16 ordin 6394 . . . . . . 7 ((Ord 𝐵 ∧ Ord dom 𝐴) → Ord (𝐵 ∩ dom 𝐴))
1716ex 412 . . . . . 6 (Ord 𝐵 → (Ord dom 𝐴 → Ord (𝐵 ∩ dom 𝐴)))
1815, 17syli 39 . . . . 5 (𝐵 ∈ dom 𝐴 → (Ord dom 𝐴 → Ord (𝐵 ∩ dom 𝐴)))
19 dmres 6002 . . . . . 6 dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴)
20 ordeq 6371 . . . . . 6 (dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴) → (Ord dom (𝐴𝐵) ↔ Ord (𝐵 ∩ dom 𝐴)))
2119, 20ax-mp 5 . . . . 5 (Ord dom (𝐴𝐵) ↔ Ord (𝐵 ∩ dom 𝐴))
2218, 21imbitrrdi 251 . . . 4 (𝐵 ∈ dom 𝐴 → (Ord dom 𝐴 → Ord dom (𝐴𝐵)))
23 dmss 5900 . . . . . . . . 9 ((𝐴𝐵) ⊆ 𝐴 → dom (𝐴𝐵) ⊆ dom 𝐴)
245, 23ax-mp 5 . . . . . . . 8 dom (𝐴𝐵) ⊆ dom 𝐴
25 ssralv 4047 . . . . . . . 8 (dom (𝐴𝐵) ⊆ dom 𝐴 → (∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) → ∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))))
2624, 25ax-mp 5 . . . . . . 7 (∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) → ∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)))
27 ssralv 4047 . . . . . . . . 9 (dom (𝐴𝐵) ⊆ dom 𝐴 → (∀𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) → ∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))))
2824, 27ax-mp 5 . . . . . . . 8 (∀𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) → ∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)))
2928ralimi 3079 . . . . . . 7 (∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) → ∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)))
3026, 29syl 17 . . . . . 6 (∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) → ∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)))
31 inss1 4225 . . . . . . . . . . . . 13 (𝐵 ∩ dom 𝐴) ⊆ 𝐵
3219, 31eqsstri 4013 . . . . . . . . . . . 12 dom (𝐴𝐵) ⊆ 𝐵
33 simpl 482 . . . . . . . . . . . 12 ((𝑥 ∈ dom (𝐴𝐵) ∧ 𝑦 ∈ dom (𝐴𝐵)) → 𝑥 ∈ dom (𝐴𝐵))
3432, 33sselid 3977 . . . . . . . . . . 11 ((𝑥 ∈ dom (𝐴𝐵) ∧ 𝑦 ∈ dom (𝐴𝐵)) → 𝑥𝐵)
3534fvresd 6912 . . . . . . . . . 10 ((𝑥 ∈ dom (𝐴𝐵) ∧ 𝑦 ∈ dom (𝐴𝐵)) → ((𝐴𝐵)‘𝑥) = (𝐴𝑥))
36 simpr 484 . . . . . . . . . . . 12 ((𝑥 ∈ dom (𝐴𝐵) ∧ 𝑦 ∈ dom (𝐴𝐵)) → 𝑦 ∈ dom (𝐴𝐵))
3732, 36sselid 3977 . . . . . . . . . . 11 ((𝑥 ∈ dom (𝐴𝐵) ∧ 𝑦 ∈ dom (𝐴𝐵)) → 𝑦𝐵)
3837fvresd 6912 . . . . . . . . . 10 ((𝑥 ∈ dom (𝐴𝐵) ∧ 𝑦 ∈ dom (𝐴𝐵)) → ((𝐴𝐵)‘𝑦) = (𝐴𝑦))
3935, 38eleq12d 2823 . . . . . . . . 9 ((𝑥 ∈ dom (𝐴𝐵) ∧ 𝑦 ∈ dom (𝐴𝐵)) → (((𝐴𝐵)‘𝑥) ∈ ((𝐴𝐵)‘𝑦) ↔ (𝐴𝑥) ∈ (𝐴𝑦)))
4039imbi2d 340 . . . . . . . 8 ((𝑥 ∈ dom (𝐴𝐵) ∧ 𝑦 ∈ dom (𝐴𝐵)) → ((𝑥𝑦 → ((𝐴𝐵)‘𝑥) ∈ ((𝐴𝐵)‘𝑦)) ↔ (𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))))
4140ralbidva 3171 . . . . . . 7 (𝑥 ∈ dom (𝐴𝐵) → (∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → ((𝐴𝐵)‘𝑥) ∈ ((𝐴𝐵)‘𝑦)) ↔ ∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))))
4241ralbiia 3087 . . . . . 6 (∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → ((𝐴𝐵)‘𝑥) ∈ ((𝐴𝐵)‘𝑦)) ↔ ∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)))
4330, 42sylibr 233 . . . . 5 (∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) → ∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → ((𝐴𝐵)‘𝑥) ∈ ((𝐴𝐵)‘𝑦)))
4443a1i 11 . . . 4 (𝐵 ∈ dom 𝐴 → (∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) → ∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → ((𝐴𝐵)‘𝑥) ∈ ((𝐴𝐵)‘𝑦))))
4513, 22, 443anim123d 1440 . . 3 (𝐵 ∈ dom 𝐴 → ((𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))) → ((𝐴𝐵):dom (𝐴𝐵)⟶On ∧ Ord dom (𝐴𝐵) ∧ ∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → ((𝐴𝐵)‘𝑥) ∈ ((𝐴𝐵)‘𝑦)))))
46 df-smo 8361 . . 3 (Smo 𝐴 ↔ (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))))
47 df-smo 8361 . . 3 (Smo (𝐴𝐵) ↔ ((𝐴𝐵):dom (𝐴𝐵)⟶On ∧ Ord dom (𝐴𝐵) ∧ ∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → ((𝐴𝐵)‘𝑥) ∈ ((𝐴𝐵)‘𝑦))))
4845, 46, 473imtr4g 296 . 2 (𝐵 ∈ dom 𝐴 → (Smo 𝐴 → Smo (𝐴𝐵)))
4948impcom 407 1 ((Smo 𝐴𝐵 ∈ dom 𝐴) → Smo (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wral 3057  cin 3944  wss 3945  dom cdm 5673  ran crn 5674  cres 5675  Ord word 6363  Oncon0 6364  Fun wfun 6537   Fn wfn 6538  wf 6539  cfv 6543  Smo wsmo 8360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5144  df-opab 5206  df-tr 5261  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ord 6367  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-smo 8361
This theorem is referenced by:  smores3  8368  alephsing  10294
  Copyright terms: Public domain W3C validator
OSZAR »