![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sstr | Structured version Visualization version GIF version |
Description: Transitivity of subclass relationship. Theorem 6 of [Suppes] p. 23. (Contributed by NM, 5-Sep-2003.) |
Ref | Expression |
---|---|
sstr | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 3986 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | |
2 | 1 | imp 406 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3472 df-in 3952 df-ss 3962 |
This theorem is referenced by: sstrd 3989 sylan9ss 3992 ssdifss 4132 uneqin 4275 intss2 5106 ssrnres 6177 relrelss 6272 fcof 6741 fcoOLD 6743 fssres 6758 ssimaex 6978 dff3 7105 tpostpos2 8247 smores 8367 om00 8590 omeulem2 8598 cofonr 8689 naddunif 8708 pmss12g 8882 unblem1 9314 unblem2 9315 unblem3 9316 unblem4 9317 isfinite2 9320 cantnfval2 9687 cantnfle 9689 rankxplim3 9899 alephinit 10113 dfac12lem2 10162 ackbij1lem11 10248 cfeq0 10274 cfsuc 10275 cff1 10276 cflim2 10281 cfss 10283 cfslb2n 10286 cofsmo 10287 cfsmolem 10288 fin23lem34 10364 fin1a2lem13 10430 axdc3lem2 10469 axdclem 10537 pwcfsdom 10601 wunfi 10739 tskxpss 10790 tskcard 10799 suprzcl 12667 uzwo 12920 uzwo2 12921 infssuzle 12940 infssuzcl 12941 supxrbnd 13334 supxrgtmnf 13335 supxrre1 13336 supxrre2 13337 supxrss 13338 infxrss 13345 iccsupr 13446 hashf1lem2 14444 trclun 14988 fsum2d 15744 fsumabs 15774 fsumrlim 15784 fsumo1 15785 fprod2d 15952 rpnnen2lem4 16188 rpnnen2lem7 16191 ramub2 16977 ressinbas 17220 ressress 17223 submre 17579 mrcss 17590 mreacs 17632 drsdirfi 18291 clatglbss 18505 ipopos 18522 cntz2ss 19280 pgrpsubgsymg 19358 ablfac1eulem 20023 subrngint 20491 subrgint 20528 tgval 22852 mretopd 22990 ssnei 23008 opnneiss 23016 restdis 23076 restcls 23079 restntr 23080 tgcnp 23151 fbssfi 23735 fgss2 23772 fgcl 23776 supfil 23793 alexsubALTlem3 23947 alexsubALTlem4 23948 cnextcn 23965 ustex3sym 24116 trust 24128 restutop 24136 utop2nei 24149 cfiluweak 24194 blssexps 24326 blssex 24327 mopni3 24397 metss 24411 metcnp3 24443 metust 24461 cfilucfil 24462 psmetutop 24470 tgioo 24706 xrsmopn 24722 fsumcn 24782 cncfmptid 24827 iscmet3lem2 25214 caussi 25219 ovolsslem 25407 ovolsscl 25409 ovolssnul 25410 opnmblALT 25526 itgfsum 25750 limcresi 25808 dvmptfsum 25901 plyss 26127 madebdayim 27808 cofcutrtime 27841 nbuhgr 29150 chsupunss 31148 shsupunss 31150 spanss 31152 shslubi 31189 shlub 31218 mdsl1i 32125 mdsl2i 32126 cvmdi 32128 mdslmd1lem1 32129 mdslmd1lem2 32130 mdslmd2i 32134 mdslmd4i 32137 atomli 32186 atcvatlem 32189 chirredlem2 32195 chirredi 32198 mdsymlem5 32211 xrge0infss 32525 tpr2rico 33508 sigainb 33750 dya2icoseg2 33893 omssubadd 33915 eulerpartlemn 33996 ballotlem2 34103 nummin 34709 cvmlift2lem12 34919 opnbnd 35804 fneint 35827 dissneqlem 36814 inunissunidif 36849 pibt2 36891 fin2so 37075 matunitlindflem1 37084 mblfinlem4 37128 ismblfin 37129 filbcmb 37208 heiborlem10 37288 igenmin 37532 lssatle 38482 paddss1 39285 paddss2 39286 paddss12 39287 paddssw2 39312 pclssN 39362 pclfinN 39368 polsubN 39375 2polvalN 39382 2polssN 39383 3polN 39384 2pmaplubN 39394 pnonsingN 39401 polsubclN 39420 dihord6apre 40724 dochsscl 40836 mapdordlem2 41105 isnacs3 42121 itgoss 42578 ofoaid1 42778 ofoaid2 42779 sspwimp 44348 sspwimpVD 44349 nsstr 44452 islptre 44998 gsumlsscl 47438 lincellss 47485 ellcoellss 47494 |
Copyright terms: Public domain | W3C validator |