![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lincellss | Structured version Visualization version GIF version |
Description: A linear combination of a subset of a linear subspace is also contained in the linear subspace. (Contributed by AV, 20-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
Ref | Expression |
---|---|
lincellss | ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) → ((𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀))) → (𝐹( linC ‘𝑀)𝑉) ∈ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1189 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) ∧ (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀)))) → 𝑀 ∈ LMod) | |
2 | simprl 770 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) ∧ (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀)))) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)) | |
3 | ssexg 5317 | . . . . . . . 8 ⊢ ((𝑉 ⊆ 𝑆 ∧ 𝑆 ∈ (LSubSp‘𝑀)) → 𝑉 ∈ V) | |
4 | 3 | ancoms 458 | . . . . . . 7 ⊢ ((𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) → 𝑉 ∈ V) |
5 | eqid 2728 | . . . . . . . . . 10 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
6 | eqid 2728 | . . . . . . . . . 10 ⊢ (LSubSp‘𝑀) = (LSubSp‘𝑀) | |
7 | 5, 6 | lssss 20813 | . . . . . . . . 9 ⊢ (𝑆 ∈ (LSubSp‘𝑀) → 𝑆 ⊆ (Base‘𝑀)) |
8 | sstr 3986 | . . . . . . . . . . 11 ⊢ ((𝑉 ⊆ 𝑆 ∧ 𝑆 ⊆ (Base‘𝑀)) → 𝑉 ⊆ (Base‘𝑀)) | |
9 | elpwg 4601 | . . . . . . . . . . 11 ⊢ (𝑉 ∈ V → (𝑉 ∈ 𝒫 (Base‘𝑀) ↔ 𝑉 ⊆ (Base‘𝑀))) | |
10 | 8, 9 | syl5ibrcom 246 | . . . . . . . . . 10 ⊢ ((𝑉 ⊆ 𝑆 ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑉 ∈ V → 𝑉 ∈ 𝒫 (Base‘𝑀))) |
11 | 10 | expcom 413 | . . . . . . . . 9 ⊢ (𝑆 ⊆ (Base‘𝑀) → (𝑉 ⊆ 𝑆 → (𝑉 ∈ V → 𝑉 ∈ 𝒫 (Base‘𝑀)))) |
12 | 7, 11 | syl 17 | . . . . . . . 8 ⊢ (𝑆 ∈ (LSubSp‘𝑀) → (𝑉 ⊆ 𝑆 → (𝑉 ∈ V → 𝑉 ∈ 𝒫 (Base‘𝑀)))) |
13 | 12 | imp 406 | . . . . . . 7 ⊢ ((𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) → (𝑉 ∈ V → 𝑉 ∈ 𝒫 (Base‘𝑀))) |
14 | 4, 13 | mpd 15 | . . . . . 6 ⊢ ((𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) → 𝑉 ∈ 𝒫 (Base‘𝑀)) |
15 | 14 | 3adant1 1128 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) → 𝑉 ∈ 𝒫 (Base‘𝑀)) |
16 | 15 | adantr 480 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) ∧ (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀)))) → 𝑉 ∈ 𝒫 (Base‘𝑀)) |
17 | lincval 47471 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝐹‘𝑣)( ·𝑠 ‘𝑀)𝑣)))) | |
18 | 1, 2, 16, 17 | syl3anc 1369 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) ∧ (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀)))) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝐹‘𝑣)( ·𝑠 ‘𝑀)𝑣)))) |
19 | eqid 2728 | . . . . 5 ⊢ (Scalar‘𝑀) = (Scalar‘𝑀) | |
20 | eqid 2728 | . . . . 5 ⊢ (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀)) | |
21 | 6, 19, 20 | gsumlsscl 47441 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) → ((𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀))) → (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝐹‘𝑣)( ·𝑠 ‘𝑀)𝑣))) ∈ 𝑆)) |
22 | 21 | imp 406 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) ∧ (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀)))) → (𝑀 Σg (𝑣 ∈ 𝑉 ↦ ((𝐹‘𝑣)( ·𝑠 ‘𝑀)𝑣))) ∈ 𝑆) |
23 | 18, 22 | eqeltrd 2829 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) ∧ (𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀)))) → (𝐹( linC ‘𝑀)𝑉) ∈ 𝑆) |
24 | 23 | ex 412 | 1 ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) → ((𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀))) → (𝐹( linC ‘𝑀)𝑉) ∈ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 Vcvv 3470 ⊆ wss 3945 𝒫 cpw 4598 class class class wbr 5142 ↦ cmpt 5225 ‘cfv 6542 (class class class)co 7414 ↑m cmap 8838 finSupp cfsupp 9379 Basecbs 17173 Scalarcsca 17229 ·𝑠 cvsca 17230 0gc0g 17414 Σg cgsu 17415 LModclmod 20736 LSubSpclss 20808 linC clinc 47466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9380 df-oi 9527 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-2 12299 df-n0 12497 df-z 12583 df-uz 12847 df-fz 13511 df-fzo 13654 df-seq 13993 df-hash 14316 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-ress 17203 df-plusg 17239 df-0g 17416 df-gsum 17417 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-submnd 18734 df-grp 18886 df-minusg 18887 df-sbg 18888 df-subg 19071 df-cntz 19261 df-cmn 19730 df-abl 19731 df-mgp 20068 df-ur 20115 df-ring 20168 df-lmod 20738 df-lss 20809 df-linc 47468 |
This theorem is referenced by: ellcoellss 47497 |
Copyright terms: Public domain | W3C validator |