![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lssss | Structured version Visualization version GIF version |
Description: A subspace is a set of vectors. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) |
Ref | Expression |
---|---|
lssss.v | ⊢ 𝑉 = (Base‘𝑊) |
lssss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
lssss | ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
2 | eqid 2728 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
3 | lssss.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
4 | eqid 2728 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
5 | eqid 2728 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
6 | lssss.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
7 | 1, 2, 3, 4, 5, 6 | islss 20817 | . 2 ⊢ (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑈)) |
8 | 7 | simp1bi 1143 | 1 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ≠ wne 2937 ∀wral 3058 ⊆ wss 3947 ∅c0 4323 ‘cfv 6548 (class class class)co 7420 Basecbs 17179 +gcplusg 17232 Scalarcsca 17235 ·𝑠 cvsca 17236 LSubSpclss 20814 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6500 df-fun 6550 df-fv 6556 df-ov 7423 df-lss 20815 |
This theorem is referenced by: lssel 20820 lssuni 20822 00lss 20824 lsssubg 20840 islss3 20842 lsslss 20844 lssintcl 20847 lssmre 20849 lssacs 20850 lspid 20865 lspssv 20866 lspssp 20871 lsslsp 20898 lsslspOLD 20899 lmhmima 20931 reslmhm 20936 lsmsp 20970 pj1lmhm 20984 lsppratlem2 21035 lsppratlem3 21036 lsppratlem4 21037 lspprat 21040 lbsextlem3 21047 lidlss 21107 ocvin 21605 pjdm2 21644 pjff 21645 pjf2 21647 pjfo 21648 pjcss 21649 frlmgsum 21705 frlmsplit2 21706 lsslindf 21763 lsslinds 21764 cphsscph 25178 lssbn 25279 minveclem1 25351 minveclem2 25353 minveclem3a 25354 minveclem3b 25355 minveclem3 25356 minveclem4a 25357 minveclem4b 25358 minveclem4 25359 minveclem6 25361 minveclem7 25362 pjthlem1 25364 pjthlem2 25365 pjth 25366 lssdimle 33301 ply1degltdimlem 33316 ply1degltdim 33317 islshpsm 38452 lshpnelb 38456 lshpnel2N 38457 lshpcmp 38460 lsatssv 38470 lssats 38484 lpssat 38485 lssatle 38487 lssat 38488 islshpcv 38525 lkrssv 38568 lkrlsp 38574 dvhopellsm 40590 dvadiaN 40601 dihss 40724 dihrnss 40751 dochord2N 40844 dochord3 40845 dihoml4 40850 dochsat 40856 dochshpncl 40857 dochnoncon 40864 djhlsmcl 40887 dihjat1lem 40901 dochsatshp 40924 dochsatshpb 40925 dochshpsat 40927 dochexmidlem2 40934 dochexmidlem5 40937 dochexmidlem6 40938 dochexmidlem7 40939 dochexmidlem8 40940 lclkrlem2p 40995 lclkrlem2v 41001 lcfrlem5 41019 lcfr 41058 mapdpglem17N 41161 mapdpglem18 41162 mapdpglem21 41165 islssfg 42494 islssfg2 42495 lnmlsslnm 42505 kercvrlsm 42507 lnmepi 42509 filnm 42514 gsumlsscl 47447 lincellss 47494 ellcoellss 47503 |
Copyright terms: Public domain | W3C validator |