![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsppratlem2 | Structured version Visualization version GIF version |
Description: Lemma for lspprat 21041. Show that if 𝑋 and 𝑌 are both in (𝑁‘{𝑥, 𝑦}) (which will be our goal for each of the two cases above), then (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈, contradicting the hypothesis for 𝑈. (Contributed by NM, 29-Aug-2014.) (Revised by Mario Carneiro, 5-Sep-2014.) |
Ref | Expression |
---|---|
lspprat.v | ⊢ 𝑉 = (Base‘𝑊) |
lspprat.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspprat.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspprat.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lspprat.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lspprat.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lspprat.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
lspprat.p | ⊢ (𝜑 → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) |
lsppratlem1.o | ⊢ 0 = (0g‘𝑊) |
lsppratlem1.x2 | ⊢ (𝜑 → 𝑥 ∈ (𝑈 ∖ { 0 })) |
lsppratlem1.y2 | ⊢ (𝜑 → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) |
lsppratlem2.x1 | ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑥, 𝑦})) |
lsppratlem2.y1 | ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑥, 𝑦})) |
Ref | Expression |
---|---|
lsppratlem2 | ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspprat.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
2 | lspprat.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
3 | lspprat.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
4 | lveclmod 20991 | . . . 4 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) |
6 | lsppratlem1.x2 | . . . . . . 7 ⊢ (𝜑 → 𝑥 ∈ (𝑈 ∖ { 0 })) | |
7 | 6 | eldifad 3959 | . . . . . 6 ⊢ (𝜑 → 𝑥 ∈ 𝑈) |
8 | lsppratlem1.y2 | . . . . . . 7 ⊢ (𝜑 → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) | |
9 | 8 | eldifad 3959 | . . . . . 6 ⊢ (𝜑 → 𝑦 ∈ 𝑈) |
10 | 7, 9 | prssd 4826 | . . . . 5 ⊢ (𝜑 → {𝑥, 𝑦} ⊆ 𝑈) |
11 | lspprat.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
12 | lspprat.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
13 | 12, 1 | lssss 20820 | . . . . . 6 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
14 | 11, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑈 ⊆ 𝑉) |
15 | 10, 14 | sstrd 3990 | . . . 4 ⊢ (𝜑 → {𝑥, 𝑦} ⊆ 𝑉) |
16 | 12, 1, 2 | lspcl 20860 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ {𝑥, 𝑦} ⊆ 𝑉) → (𝑁‘{𝑥, 𝑦}) ∈ 𝑆) |
17 | 5, 15, 16 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑥, 𝑦}) ∈ 𝑆) |
18 | lsppratlem2.x1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑥, 𝑦})) | |
19 | lsppratlem2.y1 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑥, 𝑦})) | |
20 | 1, 2, 5, 17, 18, 19 | lspprss 20876 | . 2 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑦})) |
21 | 1, 2, 5, 11, 7, 9 | lspprss 20876 | . 2 ⊢ (𝜑 → (𝑁‘{𝑥, 𝑦}) ⊆ 𝑈) |
22 | 20, 21 | sstrd 3990 | 1 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ∖ cdif 3944 ⊆ wss 3947 ⊊ wpss 3948 {csn 4629 {cpr 4631 ‘cfv 6548 Basecbs 17180 0gc0g 17421 LModclmod 20743 LSubSpclss 20815 LSpanclspn 20855 LVecclvec 20987 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-plusg 17246 df-0g 17423 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-grp 18893 df-minusg 18894 df-sbg 18895 df-mgp 20075 df-ur 20122 df-ring 20175 df-lmod 20745 df-lss 20816 df-lsp 20856 df-lvec 20988 |
This theorem is referenced by: lsppratlem5 21039 |
Copyright terms: Public domain | W3C validator |