![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lssbn | Structured version Visualization version GIF version |
Description: A subspace of a Banach space is a Banach space iff it is closed. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
lssbn.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
lssbn.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lssbn.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
Ref | Expression |
---|---|
lssbn | ⊢ ((𝑊 ∈ Ban ∧ 𝑈 ∈ 𝑆) → (𝑋 ∈ Ban ↔ 𝑈 ∈ (Clsd‘𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnnvc 25261 | . . . 4 ⊢ (𝑊 ∈ Ban → 𝑊 ∈ NrmVec) | |
2 | lssbn.x | . . . . 5 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
3 | lssbn.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
4 | 2, 3 | lssnvc 24612 | . . . 4 ⊢ ((𝑊 ∈ NrmVec ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ NrmVec) |
5 | 1, 4 | sylan 579 | . . 3 ⊢ ((𝑊 ∈ Ban ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ NrmVec) |
6 | eqid 2728 | . . . . . 6 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
7 | 2, 6 | resssca 17317 | . . . . 5 ⊢ (𝑈 ∈ 𝑆 → (Scalar‘𝑊) = (Scalar‘𝑋)) |
8 | 7 | adantl 481 | . . . 4 ⊢ ((𝑊 ∈ Ban ∧ 𝑈 ∈ 𝑆) → (Scalar‘𝑊) = (Scalar‘𝑋)) |
9 | 6 | bnsca 25260 | . . . . 5 ⊢ (𝑊 ∈ Ban → (Scalar‘𝑊) ∈ CMetSp) |
10 | 9 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ Ban ∧ 𝑈 ∈ 𝑆) → (Scalar‘𝑊) ∈ CMetSp) |
11 | 8, 10 | eqeltrrd 2830 | . . 3 ⊢ ((𝑊 ∈ Ban ∧ 𝑈 ∈ 𝑆) → (Scalar‘𝑋) ∈ CMetSp) |
12 | eqid 2728 | . . . . . 6 ⊢ (Scalar‘𝑋) = (Scalar‘𝑋) | |
13 | 12 | isbn 25259 | . . . . 5 ⊢ (𝑋 ∈ Ban ↔ (𝑋 ∈ NrmVec ∧ 𝑋 ∈ CMetSp ∧ (Scalar‘𝑋) ∈ CMetSp)) |
14 | 3anan32 1095 | . . . . 5 ⊢ ((𝑋 ∈ NrmVec ∧ 𝑋 ∈ CMetSp ∧ (Scalar‘𝑋) ∈ CMetSp) ↔ ((𝑋 ∈ NrmVec ∧ (Scalar‘𝑋) ∈ CMetSp) ∧ 𝑋 ∈ CMetSp)) | |
15 | 13, 14 | bitri 275 | . . . 4 ⊢ (𝑋 ∈ Ban ↔ ((𝑋 ∈ NrmVec ∧ (Scalar‘𝑋) ∈ CMetSp) ∧ 𝑋 ∈ CMetSp)) |
16 | 15 | baib 535 | . . 3 ⊢ ((𝑋 ∈ NrmVec ∧ (Scalar‘𝑋) ∈ CMetSp) → (𝑋 ∈ Ban ↔ 𝑋 ∈ CMetSp)) |
17 | 5, 11, 16 | syl2anc 583 | . 2 ⊢ ((𝑊 ∈ Ban ∧ 𝑈 ∈ 𝑆) → (𝑋 ∈ Ban ↔ 𝑋 ∈ CMetSp)) |
18 | bncms 25265 | . . 3 ⊢ (𝑊 ∈ Ban → 𝑊 ∈ CMetSp) | |
19 | eqid 2728 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
20 | 19, 3 | lssss 20813 | . . 3 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ (Base‘𝑊)) |
21 | lssbn.j | . . . 4 ⊢ 𝐽 = (TopOpen‘𝑊) | |
22 | 2, 19, 21 | cmsss 25272 | . . 3 ⊢ ((𝑊 ∈ CMetSp ∧ 𝑈 ⊆ (Base‘𝑊)) → (𝑋 ∈ CMetSp ↔ 𝑈 ∈ (Clsd‘𝐽))) |
23 | 18, 20, 22 | syl2an 595 | . 2 ⊢ ((𝑊 ∈ Ban ∧ 𝑈 ∈ 𝑆) → (𝑋 ∈ CMetSp ↔ 𝑈 ∈ (Clsd‘𝐽))) |
24 | 17, 23 | bitrd 279 | 1 ⊢ ((𝑊 ∈ Ban ∧ 𝑈 ∈ 𝑆) → (𝑋 ∈ Ban ↔ 𝑈 ∈ (Clsd‘𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ⊆ wss 3945 ‘cfv 6542 (class class class)co 7414 Basecbs 17173 ↾s cress 17202 Scalarcsca 17229 TopOpenctopn 17396 LSubSpclss 20808 Clsdccld 22913 NrmVeccnvc 24483 CMetSpccms 25253 Bancbn 25254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fi 9428 df-sup 9459 df-inf 9460 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-n0 12497 df-z 12583 df-dec 12702 df-uz 12847 df-q 12957 df-rp 13001 df-xneg 13118 df-xadd 13119 df-xmul 13120 df-ico 13356 df-icc 13357 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-ress 17203 df-plusg 17239 df-sca 17242 df-vsca 17243 df-tset 17245 df-ds 17248 df-rest 17397 df-topn 17398 df-0g 17416 df-topgen 17418 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-grp 18886 df-minusg 18887 df-sbg 18888 df-subg 19071 df-mgp 20068 df-ur 20115 df-ring 20168 df-lmod 20738 df-lss 20809 df-lvec 20981 df-psmet 21264 df-xmet 21265 df-met 21266 df-bl 21267 df-mopn 21268 df-fbas 21269 df-fg 21270 df-top 22789 df-topon 22806 df-topsp 22828 df-bases 22842 df-cld 22916 df-ntr 22917 df-cls 22918 df-nei 22995 df-haus 23212 df-fil 23743 df-flim 23836 df-xms 24219 df-ms 24220 df-nm 24484 df-ngp 24485 df-nlm 24488 df-nvc 24489 df-cfil 25176 df-cmet 25178 df-cms 25256 df-bn 25257 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |