Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lco0 Structured version   Visualization version   GIF version

Theorem lco0 47489
Description: The set of empty linear combinations over a monoid is the singleton with the identity element of the monoid. (Contributed by AV, 12-Apr-2019.)
Assertion
Ref Expression
lco0 (𝑀 ∈ Mnd → (𝑀 LinCo ∅) = {(0g𝑀)})

Proof of Theorem lco0
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0elpw 5350 . . 3 ∅ ∈ 𝒫 (Base‘𝑀)
2 eqid 2728 . . . 4 (Base‘𝑀) = (Base‘𝑀)
3 eqid 2728 . . . 4 (Scalar‘𝑀) = (Scalar‘𝑀)
4 eqid 2728 . . . 4 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
52, 3, 4lcoop 47473 . . 3 ((𝑀 ∈ Mnd ∧ ∅ ∈ 𝒫 (Base‘𝑀)) → (𝑀 LinCo ∅) = {𝑣 ∈ (Base‘𝑀) ∣ ∃𝑤 ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)(𝑤 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑤( linC ‘𝑀)∅))})
61, 5mpan2 690 . 2 (𝑀 ∈ Mnd → (𝑀 LinCo ∅) = {𝑣 ∈ (Base‘𝑀) ∣ ∃𝑤 ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)(𝑤 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑤( linC ‘𝑀)∅))})
7 fvex 6904 . . . . . . 7 (Base‘(Scalar‘𝑀)) ∈ V
8 map0e 8894 . . . . . . 7 ((Base‘(Scalar‘𝑀)) ∈ V → ((Base‘(Scalar‘𝑀)) ↑m ∅) = 1o)
97, 8mp1i 13 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → ((Base‘(Scalar‘𝑀)) ↑m ∅) = 1o)
10 df1o2 8487 . . . . . 6 1o = {∅}
119, 10eqtrdi 2784 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → ((Base‘(Scalar‘𝑀)) ↑m ∅) = {∅})
1211rexeqdv 3322 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → (∃𝑤 ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)(𝑤 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑤( linC ‘𝑀)∅)) ↔ ∃𝑤 ∈ {∅} (𝑤 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑤( linC ‘𝑀)∅))))
13 lincval0 47477 . . . . . . . 8 (𝑀 ∈ Mnd → (∅( linC ‘𝑀)∅) = (0g𝑀))
1413adantr 480 . . . . . . 7 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → (∅( linC ‘𝑀)∅) = (0g𝑀))
1514eqeq2d 2739 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → (𝑣 = (∅( linC ‘𝑀)∅) ↔ 𝑣 = (0g𝑀)))
1615anbi2d 629 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → ((∅ ∈ Fin ∧ 𝑣 = (∅( linC ‘𝑀)∅)) ↔ (∅ ∈ Fin ∧ 𝑣 = (0g𝑀))))
17 0ex 5301 . . . . . 6 ∅ ∈ V
18 breq1 5145 . . . . . . . . 9 (𝑤 = ∅ → (𝑤 finSupp (0g‘(Scalar‘𝑀)) ↔ ∅ finSupp (0g‘(Scalar‘𝑀))))
19 fvex 6904 . . . . . . . . . . 11 (0g‘(Scalar‘𝑀)) ∈ V
20 0fsupp 9407 . . . . . . . . . . 11 ((0g‘(Scalar‘𝑀)) ∈ V → ∅ finSupp (0g‘(Scalar‘𝑀)))
2119, 20ax-mp 5 . . . . . . . . . 10 ∅ finSupp (0g‘(Scalar‘𝑀))
22 0fin 9189 . . . . . . . . . 10 ∅ ∈ Fin
2321, 222th 264 . . . . . . . . 9 (∅ finSupp (0g‘(Scalar‘𝑀)) ↔ ∅ ∈ Fin)
2418, 23bitrdi 287 . . . . . . . 8 (𝑤 = ∅ → (𝑤 finSupp (0g‘(Scalar‘𝑀)) ↔ ∅ ∈ Fin))
25 oveq1 7421 . . . . . . . . 9 (𝑤 = ∅ → (𝑤( linC ‘𝑀)∅) = (∅( linC ‘𝑀)∅))
2625eqeq2d 2739 . . . . . . . 8 (𝑤 = ∅ → (𝑣 = (𝑤( linC ‘𝑀)∅) ↔ 𝑣 = (∅( linC ‘𝑀)∅)))
2724, 26anbi12d 631 . . . . . . 7 (𝑤 = ∅ → ((𝑤 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑤( linC ‘𝑀)∅)) ↔ (∅ ∈ Fin ∧ 𝑣 = (∅( linC ‘𝑀)∅))))
2827rexsng 4674 . . . . . 6 (∅ ∈ V → (∃𝑤 ∈ {∅} (𝑤 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑤( linC ‘𝑀)∅)) ↔ (∅ ∈ Fin ∧ 𝑣 = (∅( linC ‘𝑀)∅))))
2917, 28mp1i 13 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → (∃𝑤 ∈ {∅} (𝑤 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑤( linC ‘𝑀)∅)) ↔ (∅ ∈ Fin ∧ 𝑣 = (∅( linC ‘𝑀)∅))))
3022a1i 11 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → ∅ ∈ Fin)
3130biantrurd 532 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → (𝑣 = (0g𝑀) ↔ (∅ ∈ Fin ∧ 𝑣 = (0g𝑀))))
3216, 29, 313bitr4d 311 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → (∃𝑤 ∈ {∅} (𝑤 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑤( linC ‘𝑀)∅)) ↔ 𝑣 = (0g𝑀)))
3312, 32bitrd 279 . . 3 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → (∃𝑤 ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)(𝑤 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑤( linC ‘𝑀)∅)) ↔ 𝑣 = (0g𝑀)))
3433rabbidva 3435 . 2 (𝑀 ∈ Mnd → {𝑣 ∈ (Base‘𝑀) ∣ ∃𝑤 ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)(𝑤 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑤( linC ‘𝑀)∅))} = {𝑣 ∈ (Base‘𝑀) ∣ 𝑣 = (0g𝑀)})
35 eqid 2728 . . . 4 (0g𝑀) = (0g𝑀)
362, 35mndidcl 18702 . . 3 (𝑀 ∈ Mnd → (0g𝑀) ∈ (Base‘𝑀))
37 rabsn 4721 . . 3 ((0g𝑀) ∈ (Base‘𝑀) → {𝑣 ∈ (Base‘𝑀) ∣ 𝑣 = (0g𝑀)} = {(0g𝑀)})
3836, 37syl 17 . 2 (𝑀 ∈ Mnd → {𝑣 ∈ (Base‘𝑀) ∣ 𝑣 = (0g𝑀)} = {(0g𝑀)})
396, 34, 383eqtrd 2772 1 (𝑀 ∈ Mnd → (𝑀 LinCo ∅) = {(0g𝑀)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wrex 3066  {crab 3428  Vcvv 3470  c0 4318  𝒫 cpw 4598  {csn 4624   class class class wbr 5142  cfv 6542  (class class class)co 7414  1oc1o 8473  m cmap 8838  Fincfn 8957   finSupp cfsupp 9379  Basecbs 17173  Scalarcsca 17229  0gc0g 17414  Mndcmnd 18687   linC clinc 47466   LinCo clinco 47467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-map 8840  df-en 8958  df-fin 8961  df-fsupp 9380  df-seq 13993  df-0g 17416  df-gsum 17417  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-linc 47468  df-lco 47469
This theorem is referenced by:  lcoel0  47490
  Copyright terms: Public domain W3C validator
OSZAR »