MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infssuzcl Structured version   Visualization version   GIF version

Theorem infssuzcl 12947
Description: The infimum of a subset of an upper set of integers belongs to the subset. (Contributed by NM, 11-Oct-2005.) (Revised by AV, 5-Sep-2020.)
Assertion
Ref Expression
infssuzcl ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑆 ≠ ∅) → inf(𝑆, ℝ, < ) ∈ 𝑆)

Proof of Theorem infssuzcl
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzssz 12874 . . . 4 (ℤ𝑀) ⊆ ℤ
2 zssre 12596 . . . 4 ℤ ⊆ ℝ
31, 2sstri 3989 . . 3 (ℤ𝑀) ⊆ ℝ
4 sstr 3988 . . 3 ((𝑆 ⊆ (ℤ𝑀) ∧ (ℤ𝑀) ⊆ ℝ) → 𝑆 ⊆ ℝ)
53, 4mpan2 690 . 2 (𝑆 ⊆ (ℤ𝑀) → 𝑆 ⊆ ℝ)
6 uzwo 12926 . 2 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑆 ≠ ∅) → ∃𝑗𝑆𝑘𝑆 𝑗𝑘)
7 lbinfcl 12199 . 2 ((𝑆 ⊆ ℝ ∧ ∃𝑗𝑆𝑘𝑆 𝑗𝑘) → inf(𝑆, ℝ, < ) ∈ 𝑆)
85, 6, 7syl2an2r 684 1 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑆 ≠ ∅) → inf(𝑆, ℝ, < ) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2099  wne 2937  wral 3058  wrex 3067  wss 3947  c0 4323   class class class wbr 5148  cfv 6548  infcinf 9465  cr 11138   < clt 11279  cle 11280  cz 12589  cuz 12853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9466  df-inf 9467  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-n0 12504  df-z 12590  df-uz 12854
This theorem is referenced by:  zsupss  12952  uzwo3  12958  divalglem2  16372  bitsfzolem  16409  bezoutlem2  16516  lcmcllem  16567  lcmfval  16592  lcmfcllem  16596  odzcllem  16761  4sqlem13  16926  4sqlem14  16927  4sqlem17  16930  4sqlem18  16931  vdwnnlem3  16966  ramcl2lem  16978  ramtcl  16979  odfval  19487  odlem1  19490  odlem2  19494  gexlem1  19534  gexlem2  19537  zringlpirlem2  21389  zringlpirlem3  21390  ovolicc2lem4  25462  iundisj  25490  ig1peu  26122  ig1pdvds  26127  elqaalem1  26267  elqaalem3  26269  ftalem4  27021  ftalem5  27022  iundisjf  32392  iundisjfi  32577  dgraalem  42569  allbutfiinf  44802  ioodvbdlimc1lem1  45319  fourierdlem31  45526  elaa2lem  45621  etransclem48  45670
  Copyright terms: Public domain W3C validator
OSZAR »