![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > supxrre2 | Structured version Visualization version GIF version |
Description: The supremum of a nonempty set of reals is real iff it is not plus infinity. (Contributed by NM, 5-Feb-2006.) |
Ref | Expression |
---|---|
supxrre2 | ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (sup(𝐴, ℝ*, < ) ∈ ℝ ↔ sup(𝐴, ℝ*, < ) ≠ +∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supxrre1 13336 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (sup(𝐴, ℝ*, < ) ∈ ℝ ↔ sup(𝐴, ℝ*, < ) < +∞)) | |
2 | ressxr 11283 | . . . . . 6 ⊢ ℝ ⊆ ℝ* | |
3 | sstr 3987 | . . . . . 6 ⊢ ((𝐴 ⊆ ℝ ∧ ℝ ⊆ ℝ*) → 𝐴 ⊆ ℝ*) | |
4 | 2, 3 | mpan2 690 | . . . . 5 ⊢ (𝐴 ⊆ ℝ → 𝐴 ⊆ ℝ*) |
5 | supxrcl 13321 | . . . . 5 ⊢ (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*) | |
6 | nltpnft 13170 | . . . . 5 ⊢ (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞)) | |
7 | 4, 5, 6 | 3syl 18 | . . . 4 ⊢ (𝐴 ⊆ ℝ → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞)) |
8 | 7 | necon2abid 2979 | . . 3 ⊢ (𝐴 ⊆ ℝ → (sup(𝐴, ℝ*, < ) < +∞ ↔ sup(𝐴, ℝ*, < ) ≠ +∞)) |
9 | 8 | adantr 480 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (sup(𝐴, ℝ*, < ) < +∞ ↔ sup(𝐴, ℝ*, < ) ≠ +∞)) |
10 | 1, 9 | bitrd 279 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (sup(𝐴, ℝ*, < ) ∈ ℝ ↔ sup(𝐴, ℝ*, < ) ≠ +∞)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2936 ⊆ wss 3945 ∅c0 4319 class class class wbr 5143 supcsup 9458 ℝcr 11132 +∞cpnf 11270 ℝ*cxr 11272 < clt 11273 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 ax-pre-sup 11211 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-po 5585 df-so 5586 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-er 8719 df-en 8959 df-dom 8960 df-sdom 8961 df-sup 9460 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 |
This theorem is referenced by: ovollb2 25412 nmorepnf 30572 nmoprepnf 31671 nmfnrepnf 31684 |
Copyright terms: Public domain | W3C validator |