MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnglidlrng Structured version   Visualization version   GIF version

Theorem rnglidlrng 21142
Description: A (left) ideal of a non-unital ring is a non-unital ring. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption 𝑈 ∈ (SubGrp‘𝑅) is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
Hypotheses
Ref Expression
rnglidlabl.l 𝐿 = (LIdeal‘𝑅)
rnglidlabl.i 𝐼 = (𝑅s 𝑈)
Assertion
Ref Expression
rnglidlrng ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → 𝐼 ∈ Rng)

Proof of Theorem rnglidlrng
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rngabl 20095 . . . 4 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
213ad2ant1 1131 . . 3 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → 𝑅 ∈ Abel)
3 simp3 1136 . . 3 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → 𝑈 ∈ (SubGrp‘𝑅))
4 rnglidlabl.i . . . 4 𝐼 = (𝑅s 𝑈)
54subgabl 19791 . . 3 ((𝑅 ∈ Abel ∧ 𝑈 ∈ (SubGrp‘𝑅)) → 𝐼 ∈ Abel)
62, 3, 5syl2anc 583 . 2 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → 𝐼 ∈ Abel)
7 eqid 2728 . . . 4 (0g𝑅) = (0g𝑅)
87subg0cl 19089 . . 3 (𝑈 ∈ (SubGrp‘𝑅) → (0g𝑅) ∈ 𝑈)
9 rnglidlabl.l . . . 4 𝐿 = (LIdeal‘𝑅)
109, 4, 7rnglidlmsgrp 21141 . . 3 ((𝑅 ∈ Rng ∧ 𝑈𝐿 ∧ (0g𝑅) ∈ 𝑈) → (mulGrp‘𝐼) ∈ Smgrp)
118, 10syl3an3 1163 . 2 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → (mulGrp‘𝐼) ∈ Smgrp)
12 simpl1 1189 . . . . 5 (((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → 𝑅 ∈ Rng)
139, 4lidlssbas 21109 . . . . . . . . 9 (𝑈𝐿 → (Base‘𝐼) ⊆ (Base‘𝑅))
1413sseld 3979 . . . . . . . 8 (𝑈𝐿 → (𝑎 ∈ (Base‘𝐼) → 𝑎 ∈ (Base‘𝑅)))
1513sseld 3979 . . . . . . . 8 (𝑈𝐿 → (𝑏 ∈ (Base‘𝐼) → 𝑏 ∈ (Base‘𝑅)))
1613sseld 3979 . . . . . . . 8 (𝑈𝐿 → (𝑐 ∈ (Base‘𝐼) → 𝑐 ∈ (Base‘𝑅)))
1714, 15, 163anim123d 1440 . . . . . . 7 (𝑈𝐿 → ((𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼)) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))))
18173ad2ant2 1132 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → ((𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼)) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))))
1918imp 406 . . . . 5 (((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅)))
20 eqid 2728 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
21 eqid 2728 . . . . . 6 (+g𝑅) = (+g𝑅)
22 eqid 2728 . . . . . 6 (.r𝑅) = (.r𝑅)
2320, 21, 22rngdi 20100 . . . . 5 ((𝑅 ∈ Rng ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))) → (𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐)))
2412, 19, 23syl2anc 583 . . . 4 (((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐)))
2520, 21, 22rngdir 20101 . . . . 5 ((𝑅 ∈ Rng ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))) → ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐)))
2612, 19, 25syl2anc 583 . . . 4 (((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐)))
274, 22ressmulr 17288 . . . . . . . . . 10 (𝑈𝐿 → (.r𝑅) = (.r𝐼))
2827eqcomd 2734 . . . . . . . . 9 (𝑈𝐿 → (.r𝐼) = (.r𝑅))
29 eqidd 2729 . . . . . . . . 9 (𝑈𝐿𝑎 = 𝑎)
304, 21ressplusg 17271 . . . . . . . . . . 11 (𝑈𝐿 → (+g𝑅) = (+g𝐼))
3130eqcomd 2734 . . . . . . . . . 10 (𝑈𝐿 → (+g𝐼) = (+g𝑅))
3231oveqd 7437 . . . . . . . . 9 (𝑈𝐿 → (𝑏(+g𝐼)𝑐) = (𝑏(+g𝑅)𝑐))
3328, 29, 32oveq123d 7441 . . . . . . . 8 (𝑈𝐿 → (𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = (𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)))
3428oveqd 7437 . . . . . . . . 9 (𝑈𝐿 → (𝑎(.r𝐼)𝑏) = (𝑎(.r𝑅)𝑏))
3528oveqd 7437 . . . . . . . . 9 (𝑈𝐿 → (𝑎(.r𝐼)𝑐) = (𝑎(.r𝑅)𝑐))
3631, 34, 35oveq123d 7441 . . . . . . . 8 (𝑈𝐿 → ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐)))
3733, 36eqeq12d 2744 . . . . . . 7 (𝑈𝐿 → ((𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) ↔ (𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐))))
3831oveqd 7437 . . . . . . . . 9 (𝑈𝐿 → (𝑎(+g𝐼)𝑏) = (𝑎(+g𝑅)𝑏))
39 eqidd 2729 . . . . . . . . 9 (𝑈𝐿𝑐 = 𝑐)
4028, 38, 39oveq123d 7441 . . . . . . . 8 (𝑈𝐿 → ((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐))
4128oveqd 7437 . . . . . . . . 9 (𝑈𝐿 → (𝑏(.r𝐼)𝑐) = (𝑏(.r𝑅)𝑐))
4231, 35, 41oveq123d 7441 . . . . . . . 8 (𝑈𝐿 → ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐)) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐)))
4340, 42eqeq12d 2744 . . . . . . 7 (𝑈𝐿 → (((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐)) ↔ ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐))))
4437, 43anbi12d 631 . . . . . 6 (𝑈𝐿 → (((𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) ∧ ((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐))) ↔ ((𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐)) ∧ ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐)))))
45443ad2ant2 1132 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → (((𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) ∧ ((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐))) ↔ ((𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐)) ∧ ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐)))))
4645adantr 480 . . . 4 (((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (((𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) ∧ ((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐))) ↔ ((𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐)) ∧ ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐)))))
4724, 26, 46mpbir2and 712 . . 3 (((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → ((𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) ∧ ((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐))))
4847ralrimivvva 3200 . 2 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) ∧ ((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐))))
49 eqid 2728 . . 3 (Base‘𝐼) = (Base‘𝐼)
50 eqid 2728 . . 3 (mulGrp‘𝐼) = (mulGrp‘𝐼)
51 eqid 2728 . . 3 (+g𝐼) = (+g𝐼)
52 eqid 2728 . . 3 (.r𝐼) = (.r𝐼)
5349, 50, 51, 52isrng 20094 . 2 (𝐼 ∈ Rng ↔ (𝐼 ∈ Abel ∧ (mulGrp‘𝐼) ∈ Smgrp ∧ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) ∧ ((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐)))))
546, 11, 48, 53syl3anbrc 1341 1 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → 𝐼 ∈ Rng)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wral 3058  cfv 6548  (class class class)co 7420  Basecbs 17180  s cress 17209  +gcplusg 17233  .rcmulr 17234  0gc0g 17421  Smgrpcsgrp 18678  SubGrpcsubg 19075  Abelcabl 19736  mulGrpcmgp 20074  Rngcrng 20092  LIdealclidl 21102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-2 12306  df-3 12307  df-4 12308  df-5 12309  df-6 12310  df-7 12311  df-8 12312  df-sets 17133  df-slot 17151  df-ndx 17163  df-base 17181  df-ress 17210  df-plusg 17246  df-mulr 17247  df-sca 17249  df-vsca 17250  df-ip 17251  df-0g 17423  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-grp 18893  df-subg 19078  df-cmn 19737  df-abl 19738  df-mgp 20075  df-rng 20093  df-lss 20816  df-sra 21058  df-rgmod 21059  df-lidl 21104
This theorem is referenced by:  rng2idlsubgsubrng  21162  lidlrng  47295
  Copyright terms: Public domain W3C validator
OSZAR »