![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ablcmn | Structured version Visualization version GIF version |
Description: An Abelian group is a commutative monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
ablcmn | ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isabl 19738 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
2 | 1 | simprbi 496 | 1 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 Grpcgrp 18889 CMndccmn 19734 Abelcabl 19735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3473 df-in 3954 df-abl 19737 |
This theorem is referenced by: ablcmnd 19742 ablcom 19753 abl32 19757 ablsub4 19764 mulgdi 19780 ghmabl 19786 ghmplusg 19800 ablcntzd 19811 prdsabld 19816 gsumsubgcl 19874 gsummulgz 19897 gsuminv 19900 gsumsub 19902 telgsumfzslem 19942 telgsums 19947 ringcmn 20217 lmodcmn 20792 clmsub4 25032 lgseisenlem4 27310 primrootspoweq0 41577 aks6d1c6lem4 41645 |
Copyright terms: Public domain | W3C validator |