![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > adddii | Structured version Visualization version GIF version |
Description: Distributive law (left-distributivity). (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
axi.3 | ⊢ 𝐶 ∈ ℂ |
Ref | Expression |
---|---|
adddii | ⊢ (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
4 | adddi 11228 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | |
5 | 1, 2, 3, 4 | mp3an 1458 | 1 ⊢ (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 (class class class)co 7420 ℂcc 11137 + caddc 11142 · cmul 11144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-distr 11206 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: addrid 11425 3t3e9 12410 numltc 12734 numsucc 12748 numma 12752 decmul10add 12777 4t3lem 12805 9t11e99 12838 decbin2 12849 binom2i 14208 3dec 14258 faclbnd4lem1 14285 3dvds2dec 16310 mod2xnegi 17040 decsplit 17052 log2ublem1 26891 log2ublem2 26892 bposlem8 27237 ax5seglem7 28759 ip0i 30648 ip1ilem 30649 ipasslem10 30662 normlem0 30932 polid2i 30980 lnopunilem1 31833 dfdec100 32606 dpmul10 32631 dpmul 32649 dpmul4 32650 sn-1ne2 41840 sqmid3api 41857 ipiiie0 41992 sn-0tie0 41994 fourierswlem 45618 3exp4mod41 46956 2t6m3t4e0 47412 |
Copyright terms: Public domain | W3C validator |