MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ip1ilem Structured version   Visualization version   GIF version

Theorem ip1ilem 30702
Description: Lemma for ip1i 30703. (Contributed by NM, 21-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ip1i.a 𝐴𝑋
ip1i.b 𝐵𝑋
ip1i.c 𝐶𝑋
ip1i.6 𝑁 = (normCV𝑈)
ip0i.j 𝐽 ∈ ℂ
Assertion
Ref Expression
ip1ilem (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)) = (2 · (𝐴𝑃𝐶))

Proof of Theorem ip1ilem
StepHypRef Expression
1 ip1i.9 . . . . . . 7 𝑈 ∈ CPreHilOLD
21phnvi 30692 . . . . . 6 𝑈 ∈ NrmCVec
3 ip1i.a . . . . . 6 𝐴𝑋
4 ip1i.c . . . . . 6 𝐶𝑋
5 ip1i.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
6 ip1i.2 . . . . . . 7 𝐺 = ( +𝑣𝑈)
7 ip1i.4 . . . . . . 7 𝑆 = ( ·𝑠OLD𝑈)
8 ip1i.6 . . . . . . 7 𝑁 = (normCV𝑈)
9 ip1i.7 . . . . . . 7 𝑃 = (·𝑖OLD𝑈)
105, 6, 7, 8, 94ipval2 30584 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐶𝑋) → (4 · (𝐴𝑃𝐶)) = ((((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2)))))
112, 3, 4, 10mp3an 1457 . . . . 5 (4 · (𝐴𝑃𝐶)) = ((((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2))))
1211oveq2i 7429 . . . 4 (2 · (4 · (𝐴𝑃𝐶))) = (2 · ((((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2)))))
13 2cn 12318 . . . . 5 2 ∈ ℂ
14 4cn 12328 . . . . 5 4 ∈ ℂ
155, 9dipcl 30588 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝑃𝐶) ∈ ℂ)
162, 3, 4, 15mp3an 1457 . . . . 5 (𝐴𝑃𝐶) ∈ ℂ
1713, 14, 16mul12i 11440 . . . 4 (2 · (4 · (𝐴𝑃𝐶))) = (4 · (2 · (𝐴𝑃𝐶)))
185, 6nvgcl 30496 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐶𝑋) → (𝐴𝐺𝐶) ∈ 𝑋)
192, 3, 4, 18mp3an 1457 . . . . . . . . . . 11 (𝐴𝐺𝐶) ∈ 𝑋
205, 8, 2, 19nvcli 30538 . . . . . . . . . 10 (𝑁‘(𝐴𝐺𝐶)) ∈ ℝ
2120resqcli 14183 . . . . . . . . 9 ((𝑁‘(𝐴𝐺𝐶))↑2) ∈ ℝ
2221recni 11259 . . . . . . . 8 ((𝑁‘(𝐴𝐺𝐶))↑2) ∈ ℂ
23 ax-1cn 11197 . . . . . . . . . . . . . 14 1 ∈ ℂ
2423negcli 11559 . . . . . . . . . . . . 13 -1 ∈ ℂ
255, 7nvscl 30502 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐶𝑋) → (-1𝑆𝐶) ∈ 𝑋)
262, 24, 4, 25mp3an 1457 . . . . . . . . . . . 12 (-1𝑆𝐶) ∈ 𝑋
275, 6nvgcl 30496 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (-1𝑆𝐶) ∈ 𝑋) → (𝐴𝐺(-1𝑆𝐶)) ∈ 𝑋)
282, 3, 26, 27mp3an 1457 . . . . . . . . . . 11 (𝐴𝐺(-1𝑆𝐶)) ∈ 𝑋
295, 8, 2, 28nvcli 30538 . . . . . . . . . 10 (𝑁‘(𝐴𝐺(-1𝑆𝐶))) ∈ ℝ
3029resqcli 14183 . . . . . . . . 9 ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2) ∈ ℝ
3130recni 11259 . . . . . . . 8 ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2) ∈ ℂ
3222, 31subcli 11567 . . . . . . 7 (((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)) ∈ ℂ
33 ax-icn 11198 . . . . . . . 8 i ∈ ℂ
345, 7nvscl 30502 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ i ∈ ℂ ∧ 𝐶𝑋) → (i𝑆𝐶) ∈ 𝑋)
352, 33, 4, 34mp3an 1457 . . . . . . . . . . . . 13 (i𝑆𝐶) ∈ 𝑋
365, 6nvgcl 30496 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (i𝑆𝐶) ∈ 𝑋) → (𝐴𝐺(i𝑆𝐶)) ∈ 𝑋)
372, 3, 35, 36mp3an 1457 . . . . . . . . . . . 12 (𝐴𝐺(i𝑆𝐶)) ∈ 𝑋
385, 8, 2, 37nvcli 30538 . . . . . . . . . . 11 (𝑁‘(𝐴𝐺(i𝑆𝐶))) ∈ ℝ
3938resqcli 14183 . . . . . . . . . 10 ((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) ∈ ℝ
4039recni 11259 . . . . . . . . 9 ((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) ∈ ℂ
4133negcli 11559 . . . . . . . . . . . . . 14 -i ∈ ℂ
425, 7nvscl 30502 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ -i ∈ ℂ ∧ 𝐶𝑋) → (-i𝑆𝐶) ∈ 𝑋)
432, 41, 4, 42mp3an 1457 . . . . . . . . . . . . 13 (-i𝑆𝐶) ∈ 𝑋
445, 6nvgcl 30496 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (-i𝑆𝐶) ∈ 𝑋) → (𝐴𝐺(-i𝑆𝐶)) ∈ 𝑋)
452, 3, 43, 44mp3an 1457 . . . . . . . . . . . 12 (𝐴𝐺(-i𝑆𝐶)) ∈ 𝑋
465, 8, 2, 45nvcli 30538 . . . . . . . . . . 11 (𝑁‘(𝐴𝐺(-i𝑆𝐶))) ∈ ℝ
4746resqcli 14183 . . . . . . . . . 10 ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2) ∈ ℝ
4847recni 11259 . . . . . . . . 9 ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2) ∈ ℂ
4940, 48subcli 11567 . . . . . . . 8 (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2)) ∈ ℂ
5033, 49mulcli 11252 . . . . . . 7 (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2))) ∈ ℂ
5113, 32, 50adddii 11257 . . . . . 6 (2 · ((((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2))))) = ((2 · (((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2))) + (2 · (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2)))))
52 ip1i.b . . . . . . . . 9 𝐵𝑋
535, 6, 7, 9, 1, 3, 52, 4, 8, 23ip0i 30701 . . . . . . . 8 ((((𝑁‘((𝐴𝐺𝐵)𝐺(1𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(1𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2))) = (2 · (((𝑁‘(𝐴𝐺(1𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)))
545, 7nvsid 30503 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝐶𝑋) → (1𝑆𝐶) = 𝐶)
552, 4, 54mp2an 690 . . . . . . . . . . . . 13 (1𝑆𝐶) = 𝐶
5655oveq2i 7429 . . . . . . . . . . . 12 ((𝐴𝐺𝐵)𝐺(1𝑆𝐶)) = ((𝐴𝐺𝐵)𝐺𝐶)
5756fveq2i 6898 . . . . . . . . . . 11 (𝑁‘((𝐴𝐺𝐵)𝐺(1𝑆𝐶))) = (𝑁‘((𝐴𝐺𝐵)𝐺𝐶))
5857oveq1i 7428 . . . . . . . . . 10 ((𝑁‘((𝐴𝐺𝐵)𝐺(1𝑆𝐶)))↑2) = ((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2)
5958oveq1i 7428 . . . . . . . . 9 (((𝑁‘((𝐴𝐺𝐵)𝐺(1𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) = (((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2))
6055oveq2i 7429 . . . . . . . . . . . 12 ((𝐴𝐺(-1𝑆𝐵))𝐺(1𝑆𝐶)) = ((𝐴𝐺(-1𝑆𝐵))𝐺𝐶)
6160fveq2i 6898 . . . . . . . . . . 11 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(1𝑆𝐶))) = (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))
6261oveq1i 7428 . . . . . . . . . 10 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(1𝑆𝐶)))↑2) = ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2)
6362oveq1i 7428 . . . . . . . . 9 (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(1𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2)) = (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2))
6459, 63oveq12i 7430 . . . . . . . 8 ((((𝑁‘((𝐴𝐺𝐵)𝐺(1𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(1𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2))) = ((((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2)))
6555oveq2i 7429 . . . . . . . . . . . 12 (𝐴𝐺(1𝑆𝐶)) = (𝐴𝐺𝐶)
6665fveq2i 6898 . . . . . . . . . . 11 (𝑁‘(𝐴𝐺(1𝑆𝐶))) = (𝑁‘(𝐴𝐺𝐶))
6766oveq1i 7428 . . . . . . . . . 10 ((𝑁‘(𝐴𝐺(1𝑆𝐶)))↑2) = ((𝑁‘(𝐴𝐺𝐶))↑2)
6867oveq1i 7428 . . . . . . . . 9 (((𝑁‘(𝐴𝐺(1𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)) = (((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2))
6968oveq2i 7429 . . . . . . . 8 (2 · (((𝑁‘(𝐴𝐺(1𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2))) = (2 · (((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)))
7053, 64, 693eqtr3i 2761 . . . . . . 7 ((((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2))) = (2 · (((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)))
715, 6, 7, 9, 1, 3, 52, 4, 8, 33ip0i 30701 . . . . . . . . 9 ((((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2))) = (2 · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2)))
7271oveq2i 7429 . . . . . . . 8 (i · ((((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2)))) = (i · (2 · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2))))
735, 6nvgcl 30496 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
742, 3, 52, 73mp3an 1457 . . . . . . . . . . . . . 14 (𝐴𝐺𝐵) ∈ 𝑋
755, 6nvgcl 30496 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ (i𝑆𝐶) ∈ 𝑋) → ((𝐴𝐺𝐵)𝐺(i𝑆𝐶)) ∈ 𝑋)
762, 74, 35, 75mp3an 1457 . . . . . . . . . . . . 13 ((𝐴𝐺𝐵)𝐺(i𝑆𝐶)) ∈ 𝑋
775, 8, 2, 76nvcli 30538 . . . . . . . . . . . 12 (𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶))) ∈ ℝ
7877resqcli 14183 . . . . . . . . . . 11 ((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) ∈ ℝ
7978recni 11259 . . . . . . . . . 10 ((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) ∈ ℂ
805, 6nvgcl 30496 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ (-i𝑆𝐶) ∈ 𝑋) → ((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)) ∈ 𝑋)
812, 74, 43, 80mp3an 1457 . . . . . . . . . . . . 13 ((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)) ∈ 𝑋
825, 8, 2, 81nvcli 30538 . . . . . . . . . . . 12 (𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶))) ∈ ℝ
8382resqcli 14183 . . . . . . . . . . 11 ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2) ∈ ℝ
8483recni 11259 . . . . . . . . . 10 ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2) ∈ ℂ
8579, 84subcli 11567 . . . . . . . . 9 (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2)) ∈ ℂ
865, 7nvscl 30502 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐵𝑋) → (-1𝑆𝐵) ∈ 𝑋)
872, 24, 52, 86mp3an 1457 . . . . . . . . . . . . . . 15 (-1𝑆𝐵) ∈ 𝑋
885, 6nvgcl 30496 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ (-1𝑆𝐵) ∈ 𝑋) → (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋)
892, 3, 87, 88mp3an 1457 . . . . . . . . . . . . . 14 (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋
905, 6nvgcl 30496 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋 ∧ (i𝑆𝐶) ∈ 𝑋) → ((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)) ∈ 𝑋)
912, 89, 35, 90mp3an 1457 . . . . . . . . . . . . 13 ((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)) ∈ 𝑋
925, 8, 2, 91nvcli 30538 . . . . . . . . . . . 12 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶))) ∈ ℝ
9392resqcli 14183 . . . . . . . . . . 11 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) ∈ ℝ
9493recni 11259 . . . . . . . . . 10 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) ∈ ℂ
955, 6nvgcl 30496 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋 ∧ (-i𝑆𝐶) ∈ 𝑋) → ((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)) ∈ 𝑋)
962, 89, 43, 95mp3an 1457 . . . . . . . . . . . . 13 ((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)) ∈ 𝑋
975, 8, 2, 96nvcli 30538 . . . . . . . . . . . 12 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶))) ∈ ℝ
9897resqcli 14183 . . . . . . . . . . 11 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2) ∈ ℝ
9998recni 11259 . . . . . . . . . 10 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2) ∈ ℂ
10094, 99subcli 11567 . . . . . . . . 9 (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2)) ∈ ℂ
10133, 85, 100adddii 11257 . . . . . . . 8 (i · ((((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2)))) = ((i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2))) + (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2))))
10233, 13, 49mul12i 11440 . . . . . . . 8 (i · (2 · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2)))) = (2 · (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2))))
10372, 101, 1023eqtr3i 2761 . . . . . . 7 ((i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2))) + (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2)))) = (2 · (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2))))
10470, 103oveq12i 7430 . . . . . 6 (((((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2))) + ((i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2))) + (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2))))) = ((2 · (((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2))) + (2 · (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2)))))
10551, 104eqtr4i 2756 . . . . 5 (2 · ((((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2))))) = (((((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2))) + ((i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2))) + (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2)))))
1065, 6nvgcl 30496 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋𝐶𝑋) → ((𝐴𝐺𝐵)𝐺𝐶) ∈ 𝑋)
1072, 74, 4, 106mp3an 1457 . . . . . . . . . 10 ((𝐴𝐺𝐵)𝐺𝐶) ∈ 𝑋
1085, 8, 2, 107nvcli 30538 . . . . . . . . 9 (𝑁‘((𝐴𝐺𝐵)𝐺𝐶)) ∈ ℝ
109108resqcli 14183 . . . . . . . 8 ((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) ∈ ℝ
110109recni 11259 . . . . . . 7 ((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) ∈ ℂ
1115, 6nvgcl 30496 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ (-1𝑆𝐶) ∈ 𝑋) → ((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)) ∈ 𝑋)
1122, 74, 26, 111mp3an 1457 . . . . . . . . . 10 ((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)) ∈ 𝑋
1135, 8, 2, 112nvcli 30538 . . . . . . . . 9 (𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶))) ∈ ℝ
114113resqcli 14183 . . . . . . . 8 ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2) ∈ ℝ
115114recni 11259 . . . . . . 7 ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2) ∈ ℂ
116110, 115subcli 11567 . . . . . 6 (((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) ∈ ℂ
1175, 6nvgcl 30496 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋𝐶𝑋) → ((𝐴𝐺(-1𝑆𝐵))𝐺𝐶) ∈ 𝑋)
1182, 89, 4, 117mp3an 1457 . . . . . . . . . 10 ((𝐴𝐺(-1𝑆𝐵))𝐺𝐶) ∈ 𝑋
1195, 8, 2, 118nvcli 30538 . . . . . . . . 9 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶)) ∈ ℝ
120119resqcli 14183 . . . . . . . 8 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) ∈ ℝ
121120recni 11259 . . . . . . 7 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) ∈ ℂ
1225, 6nvgcl 30496 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋 ∧ (-1𝑆𝐶) ∈ 𝑋) → ((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)) ∈ 𝑋)
1232, 89, 26, 122mp3an 1457 . . . . . . . . . 10 ((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)) ∈ 𝑋
1245, 8, 2, 123nvcli 30538 . . . . . . . . 9 (𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶))) ∈ ℝ
125124resqcli 14183 . . . . . . . 8 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2) ∈ ℝ
126125recni 11259 . . . . . . 7 ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2) ∈ ℂ
127121, 126subcli 11567 . . . . . 6 (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2)) ∈ ℂ
12833, 85mulcli 11252 . . . . . 6 (i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2))) ∈ ℂ
12933, 100mulcli 11252 . . . . . 6 (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2))) ∈ ℂ
130116, 127, 128, 129add4i 11469 . . . . 5 (((((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2))) + ((i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2))) + (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2))))) = (((((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2)))) + ((((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2)))))
1315, 9dipcl 30588 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋𝐶𝑋) → ((𝐴𝐺𝐵)𝑃𝐶) ∈ ℂ)
1322, 74, 4, 131mp3an 1457 . . . . . . 7 ((𝐴𝐺𝐵)𝑃𝐶) ∈ ℂ
1335, 9dipcl 30588 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋𝐶𝑋) → ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶) ∈ ℂ)
1342, 89, 4, 133mp3an 1457 . . . . . . 7 ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶) ∈ ℂ
13514, 132, 134adddii 11257 . . . . . 6 (4 · (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶))) = ((4 · ((𝐴𝐺𝐵)𝑃𝐶)) + (4 · ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)))
1365, 6, 7, 8, 94ipval2 30584 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺𝐵) ∈ 𝑋𝐶𝑋) → (4 · ((𝐴𝐺𝐵)𝑃𝐶)) = ((((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2)))))
1372, 74, 4, 136mp3an 1457 . . . . . . 7 (4 · ((𝐴𝐺𝐵)𝑃𝐶)) = ((((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2))))
1385, 6, 7, 8, 94ipval2 30584 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (𝐴𝐺(-1𝑆𝐵)) ∈ 𝑋𝐶𝑋) → (4 · ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)) = ((((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2)))))
1392, 89, 4, 138mp3an 1457 . . . . . . 7 (4 · ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)) = ((((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2))))
140137, 139oveq12i 7430 . . . . . 6 ((4 · ((𝐴𝐺𝐵)𝑃𝐶)) + (4 · ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶))) = (((((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2)))) + ((((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2)))))
141135, 140eqtr2i 2754 . . . . 5 (((((𝑁‘((𝐴𝐺𝐵)𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘((𝐴𝐺𝐵)𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-i𝑆𝐶)))↑2)))) + ((((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺𝐶))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(i𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-i𝑆𝐶)))↑2))))) = (4 · (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)))
142105, 130, 1413eqtri 2757 . . . 4 (2 · ((((𝑁‘(𝐴𝐺𝐶))↑2) − ((𝑁‘(𝐴𝐺(-1𝑆𝐶)))↑2)) + (i · (((𝑁‘(𝐴𝐺(i𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-i𝑆𝐶)))↑2))))) = (4 · (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)))
14312, 17, 1423eqtr3ri 2762 . . 3 (4 · (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶))) = (4 · (2 · (𝐴𝑃𝐶)))
144143oveq1i 7428 . 2 ((4 · (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶))) / 4) = ((4 · (2 · (𝐴𝑃𝐶))) / 4)
145132, 134addcli 11251 . . 3 (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)) ∈ ℂ
146 4ne0 12351 . . 3 4 ≠ 0
147145, 14, 146divcan3i 11991 . 2 ((4 · (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶))) / 4) = (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶))
14813, 16mulcli 11252 . . 3 (2 · (𝐴𝑃𝐶)) ∈ ℂ
149148, 14, 146divcan3i 11991 . 2 ((4 · (2 · (𝐴𝑃𝐶))) / 4) = (2 · (𝐴𝑃𝐶))
150144, 147, 1493eqtr3i 2761 1 (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)) = (2 · (𝐴𝑃𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2098  cfv 6548  (class class class)co 7418  cc 11137  1c1 11140  ici 11141   + caddc 11142   · cmul 11144  cmin 11475  -cneg 11476   / cdiv 11902  2c2 12298  4c4 12300  cexp 14060  NrmCVeccnv 30460   +𝑣 cpv 30461  BaseSetcba 30462   ·𝑠OLD cns 30463  normCVcnmcv 30466  ·𝑖OLDcdip 30576  CPreHilOLDccphlo 30688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-inf2 9665  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6306  df-ord 6373  df-on 6374  df-lim 6375  df-suc 6376  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-isom 6557  df-riota 7374  df-ov 7421  df-oprab 7422  df-mpo 7423  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-er 8724  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-sup 9466  df-oi 9534  df-card 9963  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-3 12307  df-4 12308  df-n0 12504  df-z 12590  df-uz 12854  df-rp 13008  df-fz 13518  df-fzo 13661  df-seq 14001  df-exp 14061  df-hash 14324  df-cj 15080  df-re 15081  df-im 15082  df-sqrt 15216  df-abs 15217  df-clim 15466  df-sum 15667  df-grpo 30369  df-ablo 30421  df-vc 30435  df-nv 30468  df-va 30471  df-ba 30472  df-sm 30473  df-0v 30474  df-nmcv 30476  df-dip 30577  df-ph 30689
This theorem is referenced by:  ip1i  30703
  Copyright terms: Public domain W3C validator
OSZAR »