![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulassi | Structured version Visualization version GIF version |
Description: Associative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
axi.3 | ⊢ 𝐶 ∈ ℂ |
Ref | Expression |
---|---|
mulassi | ⊢ ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | axi.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
4 | mulass 11220 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | |
5 | 1, 2, 3, 4 | mp3an 1458 | 1 ⊢ ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 (class class class)co 7414 ℂcc 11130 · cmul 11137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulass 11198 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: 8th4div3 12456 numma 12745 decbin0 12841 sq4e2t8 14188 3dec 14251 faclbnd4lem1 14278 ef01bndlem 16154 3dvdsdec 16302 3dvds2dec 16303 dec5dvds 17026 karatsuba 17046 sincos4thpi 26441 sincos6thpi 26443 ang180lem2 26735 ang180lem3 26736 asin1 26819 efiatan2 26842 2efiatan 26843 log2cnv 26869 log2ublem2 26872 log2ublem3 26873 log2ub 26874 bclbnd 27206 bposlem8 27217 2lgsoddprmlem3d 27339 ax5seglem7 28739 ipasslem10 30642 siilem1 30654 normlem0 30912 normlem9 30921 bcseqi 30923 polid2i 30960 dfdec100 32587 dpmul100 32614 dpmul1000 32616 dpexpp1 32625 dpmul4 32631 quad3 35268 iexpire 35323 mulassnni 41451 sn-1ticom 41983 sn-0tie0 41988 sn-inelr 42014 fourierswlem 45612 fouriersw 45613 41prothprm 46953 tgoldbachlt 47150 |
Copyright terms: Public domain | W3C validator |