![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > afvfv0bi | Structured version Visualization version GIF version |
Description: The function's value at an argument is the empty set if and only if the value of the alternative function at this argument is either the empty set or the universe. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
afvfv0bi | ⊢ ((𝐹‘𝐴) = ∅ ↔ ((𝐹'''𝐴) = ∅ ∨ (𝐹'''𝐴) = V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioran 982 | . . . 4 ⊢ (¬ ((𝐹'''𝐴) = ∅ ∨ (𝐹'''𝐴) = V) ↔ (¬ (𝐹'''𝐴) = ∅ ∧ ¬ (𝐹'''𝐴) = V)) | |
2 | df-ne 2938 | . . . . . . 7 ⊢ ((𝐹'''𝐴) ≠ V ↔ ¬ (𝐹'''𝐴) = V) | |
3 | afvnufveq 46527 | . . . . . . 7 ⊢ ((𝐹'''𝐴) ≠ V → (𝐹'''𝐴) = (𝐹‘𝐴)) | |
4 | 2, 3 | sylbir 234 | . . . . . 6 ⊢ (¬ (𝐹'''𝐴) = V → (𝐹'''𝐴) = (𝐹‘𝐴)) |
5 | eqeq1 2732 | . . . . . . . 8 ⊢ ((𝐹'''𝐴) = (𝐹‘𝐴) → ((𝐹'''𝐴) = ∅ ↔ (𝐹‘𝐴) = ∅)) | |
6 | 5 | notbid 318 | . . . . . . 7 ⊢ ((𝐹'''𝐴) = (𝐹‘𝐴) → (¬ (𝐹'''𝐴) = ∅ ↔ ¬ (𝐹‘𝐴) = ∅)) |
7 | 6 | biimpd 228 | . . . . . 6 ⊢ ((𝐹'''𝐴) = (𝐹‘𝐴) → (¬ (𝐹'''𝐴) = ∅ → ¬ (𝐹‘𝐴) = ∅)) |
8 | 4, 7 | syl 17 | . . . . 5 ⊢ (¬ (𝐹'''𝐴) = V → (¬ (𝐹'''𝐴) = ∅ → ¬ (𝐹‘𝐴) = ∅)) |
9 | 8 | impcom 407 | . . . 4 ⊢ ((¬ (𝐹'''𝐴) = ∅ ∧ ¬ (𝐹'''𝐴) = V) → ¬ (𝐹‘𝐴) = ∅) |
10 | 1, 9 | sylbi 216 | . . 3 ⊢ (¬ ((𝐹'''𝐴) = ∅ ∨ (𝐹'''𝐴) = V) → ¬ (𝐹‘𝐴) = ∅) |
11 | 10 | con4i 114 | . 2 ⊢ ((𝐹‘𝐴) = ∅ → ((𝐹'''𝐴) = ∅ ∨ (𝐹'''𝐴) = V)) |
12 | afv0fv0 46529 | . . 3 ⊢ ((𝐹'''𝐴) = ∅ → (𝐹‘𝐴) = ∅) | |
13 | afvpcfv0 46526 | . . 3 ⊢ ((𝐹'''𝐴) = V → (𝐹‘𝐴) = ∅) | |
14 | 12, 13 | jaoi 856 | . 2 ⊢ (((𝐹'''𝐴) = ∅ ∨ (𝐹'''𝐴) = V) → (𝐹‘𝐴) = ∅) |
15 | 11, 14 | impbii 208 | 1 ⊢ ((𝐹‘𝐴) = ∅ ↔ ((𝐹'''𝐴) = ∅ ∨ (𝐹'''𝐴) = V)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 846 = wceq 1534 ≠ wne 2937 Vcvv 3471 ∅c0 4323 ‘cfv 6548 '''cafv 46497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-br 5149 df-opab 5211 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-res 5690 df-iota 6500 df-fun 6550 df-fv 6556 df-aiota 46465 df-dfat 46499 df-afv 46500 |
This theorem is referenced by: aovov0bi 46576 |
Copyright terms: Public domain | W3C validator |