![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1373 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj60 34824. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1373.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
bnj1373.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1373.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
bnj1373.4 | ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
bnj1373.5 | ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) |
Ref | Expression |
---|---|
bnj1373 | ⊢ (𝜏′ ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1373.5 | . 2 ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) | |
2 | bnj1373.3 | . . . . . . 7 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
3 | bnj1373.1 | . . . . . . . 8 ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} | |
4 | 3 | bnj1309 34784 | . . . . . . 7 ⊢ (𝑓 ∈ 𝐵 → ∀𝑥 𝑓 ∈ 𝐵) |
5 | 2, 4 | bnj1307 34785 | . . . . . 6 ⊢ (𝑓 ∈ 𝐶 → ∀𝑥 𝑓 ∈ 𝐶) |
6 | 5 | bnj1351 34588 | . . . . 5 ⊢ ((𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) → ∀𝑥(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
7 | 6 | nf5i 2134 | . . . 4 ⊢ Ⅎ𝑥(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
8 | bnj1373.4 | . . . . 5 ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) | |
9 | sneq 4640 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) | |
10 | bnj1318 34787 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → trCl(𝑥, 𝐴, 𝑅) = trCl(𝑦, 𝐴, 𝑅)) | |
11 | 9, 10 | uneq12d 4161 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
12 | 11 | eqeq2d 2736 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) ↔ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
13 | 12 | anbi2d 628 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))) |
14 | 8, 13 | bitrid 282 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))) |
15 | 7, 14 | sbciegf 3813 | . . 3 ⊢ (𝑦 ∈ V → ([𝑦 / 𝑥]𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))) |
16 | 15 | elv 3467 | . 2 ⊢ ([𝑦 / 𝑥]𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
17 | 1, 16 | bitri 274 | 1 ⊢ (𝜏′ ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {cab 2702 ∀wral 3050 ∃wrex 3059 Vcvv 3461 [wsbc 3773 ∪ cun 3942 ⊆ wss 3944 {csn 4630 〈cop 4636 dom cdm 5678 ↾ cres 5680 Fn wfn 6544 ‘cfv 6549 predc-bnj14 34450 trClc-bnj18 34456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-iun 4999 df-br 5150 df-bnj14 34451 df-bnj18 34457 |
This theorem is referenced by: bnj1374 34793 bnj1384 34794 bnj1398 34796 bnj1450 34812 bnj1489 34818 |
Copyright terms: Public domain | W3C validator |