Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj60 Structured version   Visualization version   GIF version

Theorem bnj60 34824
Description: Well-founded recursion, part 1 of 3. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj60.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj60.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj60.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj60.4 𝐹 = 𝐶
Assertion
Ref Expression
bnj60 (𝑅 FrSe 𝐴𝐹 Fn 𝐴)
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥   𝐵,𝑓   𝐺,𝑑,𝑓,𝑥   𝑅,𝑑,𝑓,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑑)   𝐶(𝑥,𝑓,𝑑)   𝐹(𝑥,𝑓,𝑑)   𝑌(𝑥,𝑓,𝑑)

Proof of Theorem bnj60
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bnj60.1 . . . . 5 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
2 bnj60.2 . . . . 5 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
3 bnj60.3 . . . . 5 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
41, 2, 3bnj1497 34822 . . . 4 𝑔𝐶 Fun 𝑔
5 eqid 2725 . . . . . . . 8 (dom 𝑔 ∩ dom ) = (dom 𝑔 ∩ dom )
61, 2, 3, 5bnj1311 34786 . . . . . . 7 ((𝑅 FrSe 𝐴𝑔𝐶𝐶) → (𝑔 ↾ (dom 𝑔 ∩ dom )) = ( ↾ (dom 𝑔 ∩ dom )))
763expia 1118 . . . . . 6 ((𝑅 FrSe 𝐴𝑔𝐶) → (𝐶 → (𝑔 ↾ (dom 𝑔 ∩ dom )) = ( ↾ (dom 𝑔 ∩ dom ))))
87ralrimiv 3134 . . . . 5 ((𝑅 FrSe 𝐴𝑔𝐶) → ∀𝐶 (𝑔 ↾ (dom 𝑔 ∩ dom )) = ( ↾ (dom 𝑔 ∩ dom )))
98ralrimiva 3135 . . . 4 (𝑅 FrSe 𝐴 → ∀𝑔𝐶𝐶 (𝑔 ↾ (dom 𝑔 ∩ dom )) = ( ↾ (dom 𝑔 ∩ dom )))
10 biid 260 . . . . 5 (∀𝑔𝐶 Fun 𝑔 ↔ ∀𝑔𝐶 Fun 𝑔)
11 biid 260 . . . . 5 ((∀𝑔𝐶 Fun 𝑔 ∧ ∀𝑔𝐶𝐶 (𝑔 ↾ (dom 𝑔 ∩ dom )) = ( ↾ (dom 𝑔 ∩ dom ))) ↔ (∀𝑔𝐶 Fun 𝑔 ∧ ∀𝑔𝐶𝐶 (𝑔 ↾ (dom 𝑔 ∩ dom )) = ( ↾ (dom 𝑔 ∩ dom ))))
1210, 5, 11bnj1383 34593 . . . 4 ((∀𝑔𝐶 Fun 𝑔 ∧ ∀𝑔𝐶𝐶 (𝑔 ↾ (dom 𝑔 ∩ dom )) = ( ↾ (dom 𝑔 ∩ dom ))) → Fun 𝐶)
134, 9, 12sylancr 585 . . 3 (𝑅 FrSe 𝐴 → Fun 𝐶)
14 bnj60.4 . . . 4 𝐹 = 𝐶
1514funeqi 6575 . . 3 (Fun 𝐹 ↔ Fun 𝐶)
1613, 15sylibr 233 . 2 (𝑅 FrSe 𝐴 → Fun 𝐹)
171, 2, 3, 14bnj1498 34823 . 2 (𝑅 FrSe 𝐴 → dom 𝐹 = 𝐴)
1816, 17bnj1422 34599 1 (𝑅 FrSe 𝐴𝐹 Fn 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  {cab 2702  wral 3050  wrex 3059  cin 3943  wss 3944  cop 4636   cuni 4909  dom cdm 5678  cres 5680  Fun wfun 6543   Fn wfn 6544  cfv 6549   predc-bnj14 34450   FrSe w-bnj15 34454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-reg 9617  ax-inf2 9666
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-om 7872  df-1o 8487  df-bnj17 34449  df-bnj14 34451  df-bnj13 34453  df-bnj15 34455  df-bnj18 34457  df-bnj19 34459
This theorem is referenced by:  bnj1501  34829  bnj1523  34833
  Copyright terms: Public domain W3C validator
OSZAR »