![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj60 | Structured version Visualization version GIF version |
Description: Well-founded recursion, part 1 of 3. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj60.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
bnj60.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj60.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
bnj60.4 | ⊢ 𝐹 = ∪ 𝐶 |
Ref | Expression |
---|---|
bnj60 | ⊢ (𝑅 FrSe 𝐴 → 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj60.1 | . . . . 5 ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} | |
2 | bnj60.2 | . . . . 5 ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
3 | bnj60.3 | . . . . 5 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
4 | 1, 2, 3 | bnj1497 34822 | . . . 4 ⊢ ∀𝑔 ∈ 𝐶 Fun 𝑔 |
5 | eqid 2725 | . . . . . . . 8 ⊢ (dom 𝑔 ∩ dom ℎ) = (dom 𝑔 ∩ dom ℎ) | |
6 | 1, 2, 3, 5 | bnj1311 34786 | . . . . . . 7 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶) → (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom 𝑔 ∩ dom ℎ))) |
7 | 6 | 3expia 1118 | . . . . . 6 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶) → (ℎ ∈ 𝐶 → (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom 𝑔 ∩ dom ℎ)))) |
8 | 7 | ralrimiv 3134 | . . . . 5 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶) → ∀ℎ ∈ 𝐶 (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom 𝑔 ∩ dom ℎ))) |
9 | 8 | ralrimiva 3135 | . . . 4 ⊢ (𝑅 FrSe 𝐴 → ∀𝑔 ∈ 𝐶 ∀ℎ ∈ 𝐶 (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom 𝑔 ∩ dom ℎ))) |
10 | biid 260 | . . . . 5 ⊢ (∀𝑔 ∈ 𝐶 Fun 𝑔 ↔ ∀𝑔 ∈ 𝐶 Fun 𝑔) | |
11 | biid 260 | . . . . 5 ⊢ ((∀𝑔 ∈ 𝐶 Fun 𝑔 ∧ ∀𝑔 ∈ 𝐶 ∀ℎ ∈ 𝐶 (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom 𝑔 ∩ dom ℎ))) ↔ (∀𝑔 ∈ 𝐶 Fun 𝑔 ∧ ∀𝑔 ∈ 𝐶 ∀ℎ ∈ 𝐶 (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom 𝑔 ∩ dom ℎ)))) | |
12 | 10, 5, 11 | bnj1383 34593 | . . . 4 ⊢ ((∀𝑔 ∈ 𝐶 Fun 𝑔 ∧ ∀𝑔 ∈ 𝐶 ∀ℎ ∈ 𝐶 (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) = (ℎ ↾ (dom 𝑔 ∩ dom ℎ))) → Fun ∪ 𝐶) |
13 | 4, 9, 12 | sylancr 585 | . . 3 ⊢ (𝑅 FrSe 𝐴 → Fun ∪ 𝐶) |
14 | bnj60.4 | . . . 4 ⊢ 𝐹 = ∪ 𝐶 | |
15 | 14 | funeqi 6575 | . . 3 ⊢ (Fun 𝐹 ↔ Fun ∪ 𝐶) |
16 | 13, 15 | sylibr 233 | . 2 ⊢ (𝑅 FrSe 𝐴 → Fun 𝐹) |
17 | 1, 2, 3, 14 | bnj1498 34823 | . 2 ⊢ (𝑅 FrSe 𝐴 → dom 𝐹 = 𝐴) |
18 | 16, 17 | bnj1422 34599 | 1 ⊢ (𝑅 FrSe 𝐴 → 𝐹 Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {cab 2702 ∀wral 3050 ∃wrex 3059 ∩ cin 3943 ⊆ wss 3944 〈cop 4636 ∪ cuni 4909 dom cdm 5678 ↾ cres 5680 Fun wfun 6543 Fn wfn 6544 ‘cfv 6549 predc-bnj14 34450 FrSe w-bnj15 34454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-reg 9617 ax-inf2 9666 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-om 7872 df-1o 8487 df-bnj17 34449 df-bnj14 34451 df-bnj13 34453 df-bnj15 34455 df-bnj18 34457 df-bnj19 34459 |
This theorem is referenced by: bnj1501 34829 bnj1523 34833 |
Copyright terms: Public domain | W3C validator |