![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > breqtrri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
Ref | Expression |
---|---|
breqtrr.1 | ⊢ 𝐴𝑅𝐵 |
breqtrr.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
breqtrri | ⊢ 𝐴𝑅𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqtrr.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
2 | breqtrr.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2734 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | breqtri 5174 | 1 ⊢ 𝐴𝑅𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 class class class wbr 5149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5150 |
This theorem is referenced by: 3brtr4i 5179 ensn1 9042 ensn1OLD 9043 1sdom2ALT 9266 dju1p1e2ALT 10199 infmap2 10243 0lt1sr 11120 0le2 12347 2pos 12348 3pos 12350 4pos 12352 5pos 12354 6pos 12355 7pos 12356 8pos 12357 9pos 12358 1lt2 12416 2lt3 12417 3lt4 12419 4lt5 12422 5lt6 12426 6lt7 12431 7lt8 12437 8lt9 12444 nn0le2xi 12559 numltc 12736 declti 12748 xlemul1a 13302 sqge0i 14187 faclbnd2 14286 cats1fv 14846 ege2le3 16070 cos2bnd 16168 3dvdsdec 16312 n2dvdsm1 16349 sumeven 16367 divalglem2 16375 pockthi 16879 dec2dvds 17035 prmlem1 17080 prmlem2 17092 1259prm 17108 2503prm 17112 4001prm 17117 2strstr1OLD 17209 vitalilem5 25585 dveflem 25955 tangtx 26485 sinq12ge0 26488 logi 26566 cxpge0 26662 asin1 26871 birthday 26931 lgamgulmlem4 27009 ppiub 27182 bposlem7 27268 lgsdir2lem2 27304 n0scut 28255 pthdlem2 29654 ex-fl 30329 ex-ind-dvds 30343 siilem2 30734 normlem6 30997 normlem7 30998 cm2mi 31508 pjnormi 31603 unierri 31986 dp2lt10 32692 dpgti 32714 pfx1s2 32749 cyc2fv2 32935 cyc3fv3 32952 hgt750lemd 34411 hgt750lem 34414 hgt750lem2 34415 hgt750leme 34421 cnndvlem1 36143 taupi 36933 poimirlem25 37249 poimirlem26 37250 poimirlem27 37251 poimirlem28 37252 ftc1anclem5 37301 fdc 37349 lcmineqlem23 41654 3lexlogpow2ineq2 41662 pellfundgt1 42445 jm2.27dlem2 42573 stoweidlem13 45539 sqwvfoura 45754 sqwvfourb 45755 fourierswlem 45756 tworepnotupword 46410 41prothprm 47096 tgblthelfgott 47292 tgoldbachlt 47293 nnlog2ge0lt1 47825 1aryenefmnd 47905 ackval42 47955 |
Copyright terms: Public domain | W3C validator |