![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > chle0i | Structured version Visualization version GIF version |
Description: No Hilbert closed subspace is smaller than zero. (Contributed by NM, 7-Apr-2001.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ch0le.1 | ⊢ 𝐴 ∈ Cℋ |
Ref | Expression |
---|---|
chle0i | ⊢ (𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ch0le.1 | . 2 ⊢ 𝐴 ∈ Cℋ | |
2 | chle0 31325 | . 2 ⊢ (𝐴 ∈ Cℋ → (𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1533 ∈ wcel 2098 ⊆ wss 3944 Cℋ cch 30811 0ℋc0h 30817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5300 ax-hilex 30881 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-xp 5684 df-cnv 5686 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fv 6557 df-ov 7422 df-sh 31089 df-ch 31103 df-ch0 31135 |
This theorem is referenced by: chj00i 31369 chsup0 31430 spansnm0i 31532 largei 32149 |
Copyright terms: Public domain | W3C validator |