![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > chss | Structured version Visualization version GIF version |
Description: A closed subspace of a Hilbert space is a subset of Hilbert space. (Contributed by NM, 24-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chss | ⊢ (𝐻 ∈ Cℋ → 𝐻 ⊆ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chsh 31047 | . 2 ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) | |
2 | shss 31033 | . 2 ⊢ (𝐻 ∈ Sℋ → 𝐻 ⊆ ℋ) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐻 ∈ Cℋ → 𝐻 ⊆ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 ⊆ wss 3947 ℋchba 30742 Sℋ csh 30751 Cℋ cch 30752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5299 ax-hilex 30822 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5684 df-cnv 5686 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fv 6556 df-ov 7423 df-sh 31030 df-ch 31044 |
This theorem is referenced by: chel 31053 pjhcl 31224 dfch2 31230 shlub 31237 chsscon2 31325 chscllem2 31461 pjvec 31519 pjocvec 31520 pjhf 31531 elpjrn 32013 |
Copyright terms: Public domain | W3C validator |