![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > chsh | Structured version Visualization version GIF version |
Description: A closed subspace is a subspace. (Contributed by NM, 19-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chsh | ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isch 31045 | . 2 ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 ⊆ wss 3947 “ cima 5681 (class class class)co 7420 ↑m cmap 8845 ℕcn 12243 ⇝𝑣 chli 30750 Sℋ csh 30751 Cℋ cch 30752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5684 df-cnv 5686 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fv 6556 df-ov 7423 df-ch 31044 |
This theorem is referenced by: chsssh 31048 chshii 31050 ch0 31051 chss 31052 choccl 31129 chjval 31175 chjcl 31180 pjhth 31216 pjhtheu 31217 pjpreeq 31221 pjpjpre 31242 ch0le 31264 chle0 31266 chslej 31321 chjcom 31329 chub1 31330 chlub 31332 chlej1 31333 chlej2 31334 spansnsh 31384 fh1 31441 fh2 31442 chscllem1 31460 chscllem2 31461 chscllem3 31462 chscllem4 31463 chscl 31464 pjorthi 31492 pjoi0 31540 hstoc 32045 hstnmoc 32046 ch1dle 32175 atomli 32205 chirredlem3 32215 sumdmdii 32238 |
Copyright terms: Public domain | W3C validator |