![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > pjhtheu | Structured version Visualization version GIF version |
Description: Projection Theorem: Any Hilbert space vector 𝐴 can be decomposed uniquely into a member 𝑥 of a closed subspace 𝐻 and a member 𝑦 of the complement of the subspace. Theorem 3.7(i) of [Beran] p. 102. See pjhtheu2 31270 for the uniqueness of 𝑦. (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pjhtheu | ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ∃!𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjhth 31247 | . . . . 5 ⊢ (𝐻 ∈ Cℋ → (𝐻 +ℋ (⊥‘𝐻)) = ℋ) | |
2 | 1 | eleq2d 2811 | . . . 4 ⊢ (𝐻 ∈ Cℋ → (𝐴 ∈ (𝐻 +ℋ (⊥‘𝐻)) ↔ 𝐴 ∈ ℋ)) |
3 | chsh 31078 | . . . . 5 ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) | |
4 | shocsh 31138 | . . . . 5 ⊢ (𝐻 ∈ Sℋ → (⊥‘𝐻) ∈ Sℋ ) | |
5 | shsel 31168 | . . . . 5 ⊢ ((𝐻 ∈ Sℋ ∧ (⊥‘𝐻) ∈ Sℋ ) → (𝐴 ∈ (𝐻 +ℋ (⊥‘𝐻)) ↔ ∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) | |
6 | 3, 4, 5 | syl2anc2 583 | . . . 4 ⊢ (𝐻 ∈ Cℋ → (𝐴 ∈ (𝐻 +ℋ (⊥‘𝐻)) ↔ ∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) |
7 | 2, 6 | bitr3d 280 | . . 3 ⊢ (𝐻 ∈ Cℋ → (𝐴 ∈ ℋ ↔ ∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) |
8 | 7 | biimpa 475 | . 2 ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) |
9 | 3, 4 | syl 17 | . . . 4 ⊢ (𝐻 ∈ Cℋ → (⊥‘𝐻) ∈ Sℋ ) |
10 | ocin 31150 | . . . . 5 ⊢ (𝐻 ∈ Sℋ → (𝐻 ∩ (⊥‘𝐻)) = 0ℋ) | |
11 | 3, 10 | syl 17 | . . . 4 ⊢ (𝐻 ∈ Cℋ → (𝐻 ∩ (⊥‘𝐻)) = 0ℋ) |
12 | pjhthmo 31156 | . . . 4 ⊢ ((𝐻 ∈ Sℋ ∧ (⊥‘𝐻) ∈ Sℋ ∧ (𝐻 ∩ (⊥‘𝐻)) = 0ℋ) → ∃*𝑥(𝑥 ∈ 𝐻 ∧ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) | |
13 | 3, 9, 11, 12 | syl3anc 1368 | . . 3 ⊢ (𝐻 ∈ Cℋ → ∃*𝑥(𝑥 ∈ 𝐻 ∧ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) |
14 | 13 | adantr 479 | . 2 ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ∃*𝑥(𝑥 ∈ 𝐻 ∧ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) |
15 | reu5 3366 | . . 3 ⊢ (∃!𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦) ↔ (∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦) ∧ ∃*𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) | |
16 | df-rmo 3364 | . . . 4 ⊢ (∃*𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦) ↔ ∃*𝑥(𝑥 ∈ 𝐻 ∧ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦))) | |
17 | 16 | anbi2i 621 | . . 3 ⊢ ((∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦) ∧ ∃*𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) ↔ (∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦) ∧ ∃*𝑥(𝑥 ∈ 𝐻 ∧ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)))) |
18 | 15, 17 | bitri 274 | . 2 ⊢ (∃!𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦) ↔ (∃𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦) ∧ ∃*𝑥(𝑥 ∈ 𝐻 ∧ ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)))) |
19 | 8, 14, 18 | sylanbrc 581 | 1 ⊢ ((𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ) → ∃!𝑥 ∈ 𝐻 ∃𝑦 ∈ (⊥‘𝐻)𝐴 = (𝑥 +ℎ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∃*wmo 2526 ∃wrex 3060 ∃!wreu 3362 ∃*wrmo 3363 ∩ cin 3938 ‘cfv 6543 (class class class)co 7416 ℋchba 30773 +ℎ cva 30774 Sℋ csh 30782 Cℋ cch 30783 ⊥cort 30784 +ℋ cph 30785 0ℋc0h 30789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-inf2 9664 ax-cc 10458 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 ax-addf 11217 ax-mulf 11218 ax-hilex 30853 ax-hfvadd 30854 ax-hvcom 30855 ax-hvass 30856 ax-hv0cl 30857 ax-hvaddid 30858 ax-hfvmul 30859 ax-hvmulid 30860 ax-hvmulass 30861 ax-hvdistr1 30862 ax-hvdistr2 30863 ax-hvmul0 30864 ax-hfi 30933 ax-his1 30936 ax-his2 30937 ax-his3 30938 ax-his4 30939 ax-hcompl 31056 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7991 df-2nd 7992 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-oadd 8489 df-omul 8490 df-er 8723 df-map 8845 df-pm 8846 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-fi 9434 df-sup 9465 df-inf 9466 df-oi 9533 df-card 9962 df-acn 9965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-n0 12503 df-z 12589 df-uz 12853 df-q 12963 df-rp 13007 df-xneg 13124 df-xadd 13125 df-xmul 13126 df-ico 13362 df-icc 13363 df-fz 13517 df-fl 13789 df-seq 13999 df-exp 14059 df-cj 15078 df-re 15079 df-im 15080 df-sqrt 15214 df-abs 15215 df-clim 15464 df-rlim 15465 df-rest 17403 df-topgen 17424 df-psmet 21275 df-xmet 21276 df-met 21277 df-bl 21278 df-mopn 21279 df-fbas 21280 df-fg 21281 df-top 22814 df-topon 22831 df-bases 22867 df-cld 22941 df-ntr 22942 df-cls 22943 df-nei 23020 df-lm 23151 df-haus 23237 df-fil 23768 df-fm 23860 df-flim 23861 df-flf 23862 df-cfil 25201 df-cau 25202 df-cmet 25203 df-grpo 30347 df-gid 30348 df-ginv 30349 df-gdiv 30350 df-ablo 30399 df-vc 30413 df-nv 30446 df-va 30449 df-ba 30450 df-sm 30451 df-0v 30452 df-vs 30453 df-nmcv 30454 df-ims 30455 df-ssp 30576 df-ph 30667 df-cbn 30717 df-hnorm 30822 df-hba 30823 df-hvsub 30825 df-hlim 30826 df-hcau 30827 df-sh 31061 df-ch 31075 df-oc 31106 df-ch0 31107 df-shs 31162 |
This theorem is referenced by: pjhtheu2 31270 |
Copyright terms: Public domain | W3C validator |