![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cmscmet | Structured version Visualization version GIF version |
Description: The induced metric on a complete normed group is complete. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
iscms.1 | ⊢ 𝑋 = (Base‘𝑀) |
iscms.2 | ⊢ 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) |
Ref | Expression |
---|---|
cmscmet | ⊢ (𝑀 ∈ CMetSp → 𝐷 ∈ (CMet‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscms.1 | . . 3 ⊢ 𝑋 = (Base‘𝑀) | |
2 | iscms.2 | . . 3 ⊢ 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) | |
3 | 1, 2 | iscms 25291 | . 2 ⊢ (𝑀 ∈ CMetSp ↔ (𝑀 ∈ MetSp ∧ 𝐷 ∈ (CMet‘𝑋))) |
4 | 3 | simprbi 495 | 1 ⊢ (𝑀 ∈ CMetSp → 𝐷 ∈ (CMet‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 × cxp 5678 ↾ cres 5682 ‘cfv 6551 Basecbs 17185 distcds 17247 MetSpcms 24242 CMetccmet 25200 CMetSpccms 25278 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2698 ax-nul 5308 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2705 df-cleq 2719 df-clel 2805 df-ne 2937 df-rab 3429 df-v 3473 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-xp 5686 df-res 5692 df-iota 6503 df-fv 6559 df-cms 25281 |
This theorem is referenced by: bncmet 25293 cmsss 25297 cmetcusp1 25299 cmscsscms 25319 minveclem3a 25373 |
Copyright terms: Public domain | W3C validator |