![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscms | Structured version Visualization version GIF version |
Description: A complete metric space is a metric space with a complete metric. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
iscms.1 | ⊢ 𝑋 = (Base‘𝑀) |
iscms.2 | ⊢ 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) |
Ref | Expression |
---|---|
iscms | ⊢ (𝑀 ∈ CMetSp ↔ (𝑀 ∈ MetSp ∧ 𝐷 ∈ (CMet‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvexd 6912 | . . 3 ⊢ (𝑤 = 𝑀 → (Base‘𝑤) ∈ V) | |
2 | fveq2 6897 | . . . . . . 7 ⊢ (𝑤 = 𝑀 → (dist‘𝑤) = (dist‘𝑀)) | |
3 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝑤 = 𝑀 ∧ 𝑏 = (Base‘𝑤)) → (dist‘𝑤) = (dist‘𝑀)) |
4 | id 22 | . . . . . . . 8 ⊢ (𝑏 = (Base‘𝑤) → 𝑏 = (Base‘𝑤)) | |
5 | fveq2 6897 | . . . . . . . . 9 ⊢ (𝑤 = 𝑀 → (Base‘𝑤) = (Base‘𝑀)) | |
6 | iscms.1 | . . . . . . . . 9 ⊢ 𝑋 = (Base‘𝑀) | |
7 | 5, 6 | eqtr4di 2786 | . . . . . . . 8 ⊢ (𝑤 = 𝑀 → (Base‘𝑤) = 𝑋) |
8 | 4, 7 | sylan9eqr 2790 | . . . . . . 7 ⊢ ((𝑤 = 𝑀 ∧ 𝑏 = (Base‘𝑤)) → 𝑏 = 𝑋) |
9 | 8 | sqxpeqd 5710 | . . . . . 6 ⊢ ((𝑤 = 𝑀 ∧ 𝑏 = (Base‘𝑤)) → (𝑏 × 𝑏) = (𝑋 × 𝑋)) |
10 | 3, 9 | reseq12d 5986 | . . . . 5 ⊢ ((𝑤 = 𝑀 ∧ 𝑏 = (Base‘𝑤)) → ((dist‘𝑤) ↾ (𝑏 × 𝑏)) = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
11 | iscms.2 | . . . . 5 ⊢ 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) | |
12 | 10, 11 | eqtr4di 2786 | . . . 4 ⊢ ((𝑤 = 𝑀 ∧ 𝑏 = (Base‘𝑤)) → ((dist‘𝑤) ↾ (𝑏 × 𝑏)) = 𝐷) |
13 | 8 | fveq2d 6901 | . . . 4 ⊢ ((𝑤 = 𝑀 ∧ 𝑏 = (Base‘𝑤)) → (CMet‘𝑏) = (CMet‘𝑋)) |
14 | 12, 13 | eleq12d 2823 | . . 3 ⊢ ((𝑤 = 𝑀 ∧ 𝑏 = (Base‘𝑤)) → (((dist‘𝑤) ↾ (𝑏 × 𝑏)) ∈ (CMet‘𝑏) ↔ 𝐷 ∈ (CMet‘𝑋))) |
15 | 1, 14 | sbcied 3822 | . 2 ⊢ (𝑤 = 𝑀 → ([(Base‘𝑤) / 𝑏]((dist‘𝑤) ↾ (𝑏 × 𝑏)) ∈ (CMet‘𝑏) ↔ 𝐷 ∈ (CMet‘𝑋))) |
16 | df-cms 25276 | . 2 ⊢ CMetSp = {𝑤 ∈ MetSp ∣ [(Base‘𝑤) / 𝑏]((dist‘𝑤) ↾ (𝑏 × 𝑏)) ∈ (CMet‘𝑏)} | |
17 | 15, 16 | elrab2 3685 | 1 ⊢ (𝑀 ∈ CMetSp ↔ (𝑀 ∈ MetSp ∧ 𝐷 ∈ (CMet‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3471 [wsbc 3776 × cxp 5676 ↾ cres 5680 ‘cfv 6548 Basecbs 17180 distcds 17242 MetSpcms 24237 CMetccmet 25195 CMetSpccms 25273 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-rab 3430 df-v 3473 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5684 df-res 5690 df-iota 6500 df-fv 6556 df-cms 25276 |
This theorem is referenced by: cmscmet 25287 cmsms 25289 cmspropd 25290 cmssmscld 25291 cmsss 25292 cncms 25296 cmscsscms 25314 cssbn 25316 |
Copyright terms: Public domain | W3C validator |