MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscms Structured version   Visualization version   GIF version

Theorem iscms 25286
Description: A complete metric space is a metric space with a complete metric. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
iscms.1 𝑋 = (Base‘𝑀)
iscms.2 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
iscms (𝑀 ∈ CMetSp ↔ (𝑀 ∈ MetSp ∧ 𝐷 ∈ (CMet‘𝑋)))

Proof of Theorem iscms
Dummy variables 𝑤 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6912 . . 3 (𝑤 = 𝑀 → (Base‘𝑤) ∈ V)
2 fveq2 6897 . . . . . . 7 (𝑤 = 𝑀 → (dist‘𝑤) = (dist‘𝑀))
32adantr 480 . . . . . 6 ((𝑤 = 𝑀𝑏 = (Base‘𝑤)) → (dist‘𝑤) = (dist‘𝑀))
4 id 22 . . . . . . . 8 (𝑏 = (Base‘𝑤) → 𝑏 = (Base‘𝑤))
5 fveq2 6897 . . . . . . . . 9 (𝑤 = 𝑀 → (Base‘𝑤) = (Base‘𝑀))
6 iscms.1 . . . . . . . . 9 𝑋 = (Base‘𝑀)
75, 6eqtr4di 2786 . . . . . . . 8 (𝑤 = 𝑀 → (Base‘𝑤) = 𝑋)
84, 7sylan9eqr 2790 . . . . . . 7 ((𝑤 = 𝑀𝑏 = (Base‘𝑤)) → 𝑏 = 𝑋)
98sqxpeqd 5710 . . . . . 6 ((𝑤 = 𝑀𝑏 = (Base‘𝑤)) → (𝑏 × 𝑏) = (𝑋 × 𝑋))
103, 9reseq12d 5986 . . . . 5 ((𝑤 = 𝑀𝑏 = (Base‘𝑤)) → ((dist‘𝑤) ↾ (𝑏 × 𝑏)) = ((dist‘𝑀) ↾ (𝑋 × 𝑋)))
11 iscms.2 . . . . 5 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))
1210, 11eqtr4di 2786 . . . 4 ((𝑤 = 𝑀𝑏 = (Base‘𝑤)) → ((dist‘𝑤) ↾ (𝑏 × 𝑏)) = 𝐷)
138fveq2d 6901 . . . 4 ((𝑤 = 𝑀𝑏 = (Base‘𝑤)) → (CMet‘𝑏) = (CMet‘𝑋))
1412, 13eleq12d 2823 . . 3 ((𝑤 = 𝑀𝑏 = (Base‘𝑤)) → (((dist‘𝑤) ↾ (𝑏 × 𝑏)) ∈ (CMet‘𝑏) ↔ 𝐷 ∈ (CMet‘𝑋)))
151, 14sbcied 3822 . 2 (𝑤 = 𝑀 → ([(Base‘𝑤) / 𝑏]((dist‘𝑤) ↾ (𝑏 × 𝑏)) ∈ (CMet‘𝑏) ↔ 𝐷 ∈ (CMet‘𝑋)))
16 df-cms 25276 . 2 CMetSp = {𝑤 ∈ MetSp ∣ [(Base‘𝑤) / 𝑏]((dist‘𝑤) ↾ (𝑏 × 𝑏)) ∈ (CMet‘𝑏)}
1715, 16elrab2 3685 1 (𝑀 ∈ CMetSp ↔ (𝑀 ∈ MetSp ∧ 𝐷 ∈ (CMet‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1534  wcel 2099  Vcvv 3471  [wsbc 3776   × cxp 5676  cres 5680  cfv 6548  Basecbs 17180  distcds 17242  MetSpcms 24237  CMetccmet 25195  CMetSpccms 25273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-rab 3430  df-v 3473  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-xp 5684  df-res 5690  df-iota 6500  df-fv 6556  df-cms 25276
This theorem is referenced by:  cmscmet  25287  cmsms  25289  cmspropd  25290  cmssmscld  25291  cmsss  25292  cncms  25296  cmscsscms  25314  cssbn  25316
  Copyright terms: Public domain W3C validator
OSZAR »