![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > colcom | Structured version Visualization version GIF version |
Description: Swapping the points defining a line keeps it unchanged. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.) |
Ref | Expression |
---|---|
tglngval.p | ⊢ 𝑃 = (Base‘𝐺) |
tglngval.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglngval.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglngval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglngval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
tglngval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
tgcolg.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
colrot | ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) |
Ref | Expression |
---|---|
colcom | ⊢ (𝜑 → (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | colrot | . 2 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) | |
2 | 3orcomb 1091 | . . . 4 ⊢ ((𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑍𝐼𝑌))) | |
3 | tglngval.p | . . . . . 6 ⊢ 𝑃 = (Base‘𝐺) | |
4 | eqid 2725 | . . . . . 6 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
5 | tglngval.i | . . . . . 6 ⊢ 𝐼 = (Itv‘𝐺) | |
6 | tglngval.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | tglngval.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
8 | tgcolg.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
9 | tglngval.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
10 | 3, 4, 5, 6, 7, 8, 9 | tgbtwncomb 28365 | . . . . 5 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ↔ 𝑍 ∈ (𝑌𝐼𝑋))) |
11 | 3, 4, 5, 6, 7, 9, 8 | tgbtwncomb 28365 | . . . . 5 ⊢ (𝜑 → (𝑌 ∈ (𝑋𝐼𝑍) ↔ 𝑌 ∈ (𝑍𝐼𝑋))) |
12 | 3, 4, 5, 6, 8, 7, 9 | tgbtwncomb 28365 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ (𝑍𝐼𝑌) ↔ 𝑋 ∈ (𝑌𝐼𝑍))) |
13 | 10, 11, 12 | 3orbi123d 1431 | . . . 4 ⊢ (𝜑 → ((𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑍𝐼𝑌)) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑋 ∈ (𝑌𝐼𝑍)))) |
14 | 2, 13 | bitrid 282 | . . 3 ⊢ (𝜑 → ((𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑋 ∈ (𝑌𝐼𝑍)))) |
15 | tglngval.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
16 | 3, 15, 5, 6, 7, 9, 8 | tgcolg 28430 | . . 3 ⊢ (𝜑 → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
17 | 3, 15, 5, 6, 9, 7, 8 | tgcolg 28430 | . . 3 ⊢ (𝜑 → ((𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑋 ∈ (𝑌𝐼𝑍)))) |
18 | 14, 16, 17 | 3bitr4d 310 | . 2 ⊢ (𝜑 → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋))) |
19 | 1, 18 | mpbid 231 | 1 ⊢ (𝜑 → (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 845 ∨ w3o 1083 = wceq 1533 ∈ wcel 2098 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 distcds 17245 TarskiGcstrkg 28303 Itvcitv 28309 LineGclng 28310 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6501 df-fun 6551 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 df-trkgc 28324 df-trkgb 28325 df-trkgcb 28326 df-trkg 28329 |
This theorem is referenced by: ncolcom 28437 tglineeltr 28507 mirtrcgr 28559 symquadlem 28565 midexlem 28568 colperpexlem1 28606 mideulem2 28610 opphllem 28611 hlpasch 28632 colhp 28646 trgcopy 28680 cgrg3col4 28729 tgasa1 28734 |
Copyright terms: Public domain | W3C validator |