MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colcom Structured version   Visualization version   GIF version

Theorem colcom 28434
Description: Swapping the points defining a line keeps it unchanged. Part of Theorem 4.11 of [Schwabhauser] p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Base‘𝐺)
tglngval.l 𝐿 = (LineG‘𝐺)
tglngval.i 𝐼 = (Itv‘𝐺)
tglngval.g (𝜑𝐺 ∈ TarskiG)
tglngval.x (𝜑𝑋𝑃)
tglngval.y (𝜑𝑌𝑃)
tgcolg.z (𝜑𝑍𝑃)
colrot (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
Assertion
Ref Expression
colcom (𝜑 → (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋))

Proof of Theorem colcom
StepHypRef Expression
1 colrot . 2 (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
2 3orcomb 1091 . . . 4 ((𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑍𝐼𝑌)))
3 tglngval.p . . . . . 6 𝑃 = (Base‘𝐺)
4 eqid 2725 . . . . . 6 (dist‘𝐺) = (dist‘𝐺)
5 tglngval.i . . . . . 6 𝐼 = (Itv‘𝐺)
6 tglngval.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
7 tglngval.x . . . . . 6 (𝜑𝑋𝑃)
8 tgcolg.z . . . . . 6 (𝜑𝑍𝑃)
9 tglngval.y . . . . . 6 (𝜑𝑌𝑃)
103, 4, 5, 6, 7, 8, 9tgbtwncomb 28365 . . . . 5 (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ↔ 𝑍 ∈ (𝑌𝐼𝑋)))
113, 4, 5, 6, 7, 9, 8tgbtwncomb 28365 . . . . 5 (𝜑 → (𝑌 ∈ (𝑋𝐼𝑍) ↔ 𝑌 ∈ (𝑍𝐼𝑋)))
123, 4, 5, 6, 8, 7, 9tgbtwncomb 28365 . . . . 5 (𝜑 → (𝑋 ∈ (𝑍𝐼𝑌) ↔ 𝑋 ∈ (𝑌𝐼𝑍)))
1310, 11, 123orbi123d 1431 . . . 4 (𝜑 → ((𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍) ∨ 𝑋 ∈ (𝑍𝐼𝑌)) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑋 ∈ (𝑌𝐼𝑍))))
142, 13bitrid 282 . . 3 (𝜑 → ((𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑋 ∈ (𝑌𝐼𝑍))))
15 tglngval.l . . . 4 𝐿 = (LineG‘𝐺)
163, 15, 5, 6, 7, 9, 8tgcolg 28430 . . 3 (𝜑 → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
173, 15, 5, 6, 9, 7, 8tgcolg 28430 . . 3 (𝜑 → ((𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋) ↔ (𝑍 ∈ (𝑌𝐼𝑋) ∨ 𝑌 ∈ (𝑍𝐼𝑋) ∨ 𝑋 ∈ (𝑌𝐼𝑍))))
1814, 16, 173bitr4d 310 . 2 (𝜑 → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋)))
191, 18mpbid 231 1 (𝜑 → (𝑍 ∈ (𝑌𝐿𝑋) ∨ 𝑌 = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 845  w3o 1083   = wceq 1533  wcel 2098  cfv 6549  (class class class)co 7419  Basecbs 17183  distcds 17245  TarskiGcstrkg 28303  Itvcitv 28309  LineGclng 28310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-iota 6501  df-fun 6551  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-trkgc 28324  df-trkgb 28325  df-trkgcb 28326  df-trkg 28329
This theorem is referenced by:  ncolcom  28437  tglineeltr  28507  mirtrcgr  28559  symquadlem  28565  midexlem  28568  colperpexlem1  28606  mideulem2  28610  opphllem  28611  hlpasch  28632  colhp  28646  trgcopy  28680  cgrg3col4  28729  tgasa1  28734
  Copyright terms: Public domain W3C validator
OSZAR »