Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cossssid3 Structured version   Visualization version   GIF version

Theorem cossssid3 38167
Description: Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 10-Mar-2019.)
Assertion
Ref Expression
cossssid3 ( ≀ 𝑅 ⊆ I ↔ ∀𝑢𝑥𝑦((𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦))
Distinct variable group:   𝑢,𝑅,𝑥,𝑦

Proof of Theorem cossssid3
StepHypRef Expression
1 cossssid2 38166 . 2 ( ≀ 𝑅 ⊆ I ↔ ∀𝑥𝑦(∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦))
2 19.23v 1938 . . . . 5 (∀𝑢((𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦) ↔ (∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦))
32albii 1814 . . . 4 (∀𝑦𝑢((𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦) ↔ ∀𝑦(∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦))
4 alcom 2149 . . . 4 (∀𝑦𝑢((𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦) ↔ ∀𝑢𝑦((𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦))
53, 4bitr3i 276 . . 3 (∀𝑦(∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦) ↔ ∀𝑢𝑦((𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦))
65albii 1814 . 2 (∀𝑥𝑦(∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥𝑢𝑦((𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦))
7 alcom 2149 . 2 (∀𝑥𝑢𝑦((𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦) ↔ ∀𝑢𝑥𝑦((𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦))
81, 6, 73bitri 296 1 ( ≀ 𝑅 ⊆ I ↔ ∀𝑢𝑥𝑦((𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wal 1532  wex 1774  wss 3947   class class class wbr 5153   I cid 5579  ccoss 37876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ral 3052  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-opab 5216  df-id 5580  df-coss 38109
This theorem is referenced by:  cossssid4  38168  cosscnvssid3  38174  cosselcnvrefrels3  38237  dffunALTV3  38387
  Copyright terms: Public domain W3C validator
OSZAR »