MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrexilem1 Structured version   Visualization version   GIF version

Theorem cusgrexilem1 29251
Description: Lemma 1 for cusgrexi 29255. (Contributed by Alexander van der Vekens, 12-Jan-2018.)
Hypothesis
Ref Expression
usgrexi.p 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
Assertion
Ref Expression
cusgrexilem1 (𝑉𝑊 → ( I ↾ 𝑃) ∈ V)
Distinct variable group:   𝑥,𝑉
Allowed substitution hints:   𝑃(𝑥)   𝑊(𝑥)

Proof of Theorem cusgrexilem1
StepHypRef Expression
1 usgrexi.p . . 3 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
2 pwexg 5378 . . 3 (𝑉𝑊 → 𝒫 𝑉 ∈ V)
31, 2rabexd 5335 . 2 (𝑉𝑊𝑃 ∈ V)
4 resiexg 7920 . 2 (𝑃 ∈ V → ( I ↾ 𝑃) ∈ V)
53, 4syl 17 1 (𝑉𝑊 → ( I ↾ 𝑃) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  {crab 3429  Vcvv 3471  𝒫 cpw 4603   I cid 5575  cres 5680  cfv 6548  2c2 12297  chash 14321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-id 5576  df-xp 5684  df-rel 5685  df-res 5690
This theorem is referenced by:  usgrexi  29253  cusgrexi  29255  cusgrexg  29256  structtousgr  29257  structtocusgr  29258
  Copyright terms: Public domain W3C validator
OSZAR »