![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cusgrexilem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for cusgrexi 29255. (Contributed by Alexander van der Vekens, 12-Jan-2018.) |
Ref | Expression |
---|---|
usgrexi.p | ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} |
Ref | Expression |
---|---|
cusgrexilem1 | ⊢ (𝑉 ∈ 𝑊 → ( I ↾ 𝑃) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgrexi.p | . . 3 ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} | |
2 | pwexg 5378 | . . 3 ⊢ (𝑉 ∈ 𝑊 → 𝒫 𝑉 ∈ V) | |
3 | 1, 2 | rabexd 5335 | . 2 ⊢ (𝑉 ∈ 𝑊 → 𝑃 ∈ V) |
4 | resiexg 7920 | . 2 ⊢ (𝑃 ∈ V → ( I ↾ 𝑃) ∈ V) | |
5 | 3, 4 | syl 17 | 1 ⊢ (𝑉 ∈ 𝑊 → ( I ↾ 𝑃) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 {crab 3429 Vcvv 3471 𝒫 cpw 4603 I cid 5575 ↾ cres 5680 ‘cfv 6548 2c2 12297 ♯chash 14321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-id 5576 df-xp 5684 df-rel 5685 df-res 5690 |
This theorem is referenced by: usgrexi 29253 cusgrexi 29255 cusgrexg 29256 structtousgr 29257 structtocusgr 29258 |
Copyright terms: Public domain | W3C validator |