MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrexi Structured version   Visualization version   GIF version

Theorem usgrexi 29247
Description: An arbitrary set regarded as vertices together with the set of pairs of elements of this set regarded as edges is a simple graph. (Contributed by Alexander van der Vekens, 12-Jan-2018.) (Revised by AV, 5-Nov-2020.) (Proof shortened by AV, 10-Nov-2021.)
Hypothesis
Ref Expression
usgrexi.p 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
Assertion
Ref Expression
usgrexi (𝑉𝑊 → ⟨𝑉, ( I ↾ 𝑃)⟩ ∈ USGraph)
Distinct variable groups:   𝑥,𝑉   𝑥,𝑃   𝑥,𝑊

Proof of Theorem usgrexi
StepHypRef Expression
1 usgrexi.p . . . 4 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
21usgrexilem 29246 . . 3 (𝑉𝑊 → ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
31cusgrexilem1 29245 . . . . 5 (𝑉𝑊 → ( I ↾ 𝑃) ∈ V)
4 opiedgfv 28813 . . . . 5 ((𝑉𝑊 ∧ ( I ↾ 𝑃) ∈ V) → (iEdg‘⟨𝑉, ( I ↾ 𝑃)⟩) = ( I ↾ 𝑃))
53, 4mpdan 686 . . . 4 (𝑉𝑊 → (iEdg‘⟨𝑉, ( I ↾ 𝑃)⟩) = ( I ↾ 𝑃))
65dmeqd 5902 . . . 4 (𝑉𝑊 → dom (iEdg‘⟨𝑉, ( I ↾ 𝑃)⟩) = dom ( I ↾ 𝑃))
7 opvtxfv 28810 . . . . . . 7 ((𝑉𝑊 ∧ ( I ↾ 𝑃) ∈ V) → (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) = 𝑉)
83, 7mpdan 686 . . . . . 6 (𝑉𝑊 → (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) = 𝑉)
98pweqd 4615 . . . . 5 (𝑉𝑊 → 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) = 𝒫 𝑉)
109rabeqdv 3443 . . . 4 (𝑉𝑊 → {𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
115, 6, 10f1eq123d 6825 . . 3 (𝑉𝑊 → ((iEdg‘⟨𝑉, ( I ↾ 𝑃)⟩):dom (iEdg‘⟨𝑉, ( I ↾ 𝑃)⟩)–1-1→{𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) ∣ (♯‘𝑥) = 2} ↔ ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
122, 11mpbird 257 . 2 (𝑉𝑊 → (iEdg‘⟨𝑉, ( I ↾ 𝑃)⟩):dom (iEdg‘⟨𝑉, ( I ↾ 𝑃)⟩)–1-1→{𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) ∣ (♯‘𝑥) = 2})
13 opex 5460 . . 3 𝑉, ( I ↾ 𝑃)⟩ ∈ V
14 eqid 2728 . . . 4 (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) = (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩)
15 eqid 2728 . . . 4 (iEdg‘⟨𝑉, ( I ↾ 𝑃)⟩) = (iEdg‘⟨𝑉, ( I ↾ 𝑃)⟩)
1614, 15isusgrs 28962 . . 3 (⟨𝑉, ( I ↾ 𝑃)⟩ ∈ V → (⟨𝑉, ( I ↾ 𝑃)⟩ ∈ USGraph ↔ (iEdg‘⟨𝑉, ( I ↾ 𝑃)⟩):dom (iEdg‘⟨𝑉, ( I ↾ 𝑃)⟩)–1-1→{𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) ∣ (♯‘𝑥) = 2}))
1713, 16mp1i 13 . 2 (𝑉𝑊 → (⟨𝑉, ( I ↾ 𝑃)⟩ ∈ USGraph ↔ (iEdg‘⟨𝑉, ( I ↾ 𝑃)⟩):dom (iEdg‘⟨𝑉, ( I ↾ 𝑃)⟩)–1-1→{𝑥 ∈ 𝒫 (Vtx‘⟨𝑉, ( I ↾ 𝑃)⟩) ∣ (♯‘𝑥) = 2}))
1812, 17mpbird 257 1 (𝑉𝑊 → ⟨𝑉, ( I ↾ 𝑃)⟩ ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1534  wcel 2099  {crab 3428  Vcvv 3470  𝒫 cpw 4598  cop 4630   I cid 5569  dom cdm 5672  cres 5674  1-1wf1 6539  cfv 6542  2c2 12291  chash 14315  Vtxcvtx 28802  iEdgciedg 28803  USGraphcusgr 28955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-n0 12497  df-z 12583  df-uz 12847  df-fz 13511  df-hash 14316  df-vtx 28804  df-iedg 28805  df-usgr 28957
This theorem is referenced by:  cusgrexi  29249
  Copyright terms: Public domain W3C validator
OSZAR »