![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pweqd | Structured version Visualization version GIF version |
Description: Equality deduction for power class. (Contributed by NM, 27-Nov-2013.) |
Ref | Expression |
---|---|
pweqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
pweqd | ⊢ (𝜑 → 𝒫 𝐴 = 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | pweq 4617 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝒫 𝐴 = 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 𝒫 cpw 4603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3473 df-in 3954 df-ss 3964 df-pw 4605 |
This theorem is referenced by: undefval 8281 pmvalg 8855 marypha1lem 9456 marypha1 9457 r1val3 9861 ackbij2lem2 10263 ackbij2lem3 10264 r1om 10267 isfin2 10317 hsmexlem8 10447 vdwmc 16946 hashbcval 16970 ismre 17569 mrcfval 17587 mrisval 17609 mreexexlemd 17623 brssc 17796 lubfval 18341 glbfval 18354 isclat 18491 issubmgm 18661 issubm 18754 issubg 19080 cntzfval 19270 lsmfval 19592 lsmpropd 19631 pj1fval 19648 issubrng 20483 issubrg 20509 lssset 20816 lspfval 20856 lsppropd 20902 islbs 20960 sraval 21059 ocvfval 21597 isobs 21653 islinds 21742 aspval 21805 opsrval 21983 ply1frcl 22236 evls1fval 22237 basis1 22852 baspartn 22856 cldval 22926 ntrfval 22927 clsfval 22928 mretopd 22995 neifval 23002 lpfval 23041 cncls2 23176 iscnrm 23226 iscnrm2 23241 2ndcsep 23362 kgenval 23438 xkoval 23490 dfac14 23521 qtopval 23598 qtopval2 23599 isfbas 23732 trfbas2 23746 flimval 23866 elflim 23874 flimclslem 23887 fclsfnflim 23930 fclscmp 23933 tsmsfbas 24031 tsmsval2 24033 ustval 24106 utopval 24136 mopnfss 24348 setsmstopn 24385 met2ndc 24431 madeval 27778 elmade2 27794 istrkgb 28258 isuhgr 28872 isushgr 28873 isuhgrop 28882 uhgrun 28886 uhgrstrrepe 28890 isupgr 28896 upgrop 28906 isumgr 28907 upgrun 28930 umgrun 28932 isuspgr 28964 isusgr 28965 isuspgrop 28973 isusgrop 28974 ausgrusgrb 28977 usgrstrrepe 29047 issubgr 29083 uhgrspansubgrlem 29102 usgrexi 29253 1hevtxdg1 29319 umgr2v2e 29338 zarcmplem 33482 ismeas 33818 omsval 33913 omscl 33915 omsf 33916 oms0 33917 carsgval 33923 omsmeas 33943 erdszelem3 34803 erdsze 34812 kur14 34826 iscvm 34869 mpstval 35145 mclsval 35173 bj-imdirvallem 36659 pibp21 36894 heibor 37294 idlval 37486 igenval 37534 paddfval 39270 pclfvalN 39362 polfvalN 39377 docaffvalN 40594 docafvalN 40595 djaffvalN 40606 djafvalN 40607 dochffval 40822 dochfval 40823 djhffval 40869 djhfval 40870 lpolsetN 40955 lcdlss2N 41093 mzpclval 42145 dfac21 42490 islmodfg 42493 islssfg 42494 rgspnval 42592 rfovd 43431 fsovrfovd 43439 gneispace2 43562 ismnu 43698 sge0val 45754 ismea 45839 psmeasure 45859 caragenval 45881 isome 45882 omeunile 45893 isomennd 45919 ovnval 45929 hspmbl 46017 isvonmbl 46026 afv2eq12d 46595 lincop 47476 lcoop 47479 islininds 47514 ldepsnlinc 47576 isclatd 47994 |
Copyright terms: Public domain | W3C validator |