![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pclfvalN | Structured version Visualization version GIF version |
Description: The projective subspace closure function. (Contributed by NM, 7-Sep-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pclfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pclfval.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
pclfval.c | ⊢ 𝑈 = (PCl‘𝐾) |
Ref | Expression |
---|---|
pclfvalN | ⊢ (𝐾 ∈ 𝑉 → 𝑈 = (𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3490 | . 2 ⊢ (𝐾 ∈ 𝑉 → 𝐾 ∈ V) | |
2 | pclfval.c | . . 3 ⊢ 𝑈 = (PCl‘𝐾) | |
3 | fveq2 6897 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (Atoms‘𝑘) = (Atoms‘𝐾)) | |
4 | pclfval.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 3, 4 | eqtr4di 2786 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (Atoms‘𝑘) = 𝐴) |
6 | 5 | pweqd 4620 | . . . . 5 ⊢ (𝑘 = 𝐾 → 𝒫 (Atoms‘𝑘) = 𝒫 𝐴) |
7 | fveq2 6897 | . . . . . . . 8 ⊢ (𝑘 = 𝐾 → (PSubSp‘𝑘) = (PSubSp‘𝐾)) | |
8 | pclfval.s | . . . . . . . 8 ⊢ 𝑆 = (PSubSp‘𝐾) | |
9 | 7, 8 | eqtr4di 2786 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (PSubSp‘𝑘) = 𝑆) |
10 | 9 | rabeqdv 3444 | . . . . . 6 ⊢ (𝑘 = 𝐾 → {𝑦 ∈ (PSubSp‘𝑘) ∣ 𝑥 ⊆ 𝑦} = {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦}) |
11 | 10 | inteqd 4954 | . . . . 5 ⊢ (𝑘 = 𝐾 → ∩ {𝑦 ∈ (PSubSp‘𝑘) ∣ 𝑥 ⊆ 𝑦} = ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦}) |
12 | 6, 11 | mpteq12dv 5239 | . . . 4 ⊢ (𝑘 = 𝐾 → (𝑥 ∈ 𝒫 (Atoms‘𝑘) ↦ ∩ {𝑦 ∈ (PSubSp‘𝑘) ∣ 𝑥 ⊆ 𝑦}) = (𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦})) |
13 | df-pclN 39361 | . . . 4 ⊢ PCl = (𝑘 ∈ V ↦ (𝑥 ∈ 𝒫 (Atoms‘𝑘) ↦ ∩ {𝑦 ∈ (PSubSp‘𝑘) ∣ 𝑥 ⊆ 𝑦})) | |
14 | 4 | fvexi 6911 | . . . . . 6 ⊢ 𝐴 ∈ V |
15 | 14 | pwex 5380 | . . . . 5 ⊢ 𝒫 𝐴 ∈ V |
16 | 15 | mptex 7235 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦}) ∈ V |
17 | 12, 13, 16 | fvmpt 7005 | . . 3 ⊢ (𝐾 ∈ V → (PCl‘𝐾) = (𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦})) |
18 | 2, 17 | eqtrid 2780 | . 2 ⊢ (𝐾 ∈ V → 𝑈 = (𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦})) |
19 | 1, 18 | syl 17 | 1 ⊢ (𝐾 ∈ 𝑉 → 𝑈 = (𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 {crab 3429 Vcvv 3471 ⊆ wss 3947 𝒫 cpw 4603 ∩ cint 4949 ↦ cmpt 5231 ‘cfv 6548 Atomscatm 38735 PSubSpcpsubsp 38969 PClcpclN 39360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-pclN 39361 |
This theorem is referenced by: pclvalN 39363 |
Copyright terms: Public domain | W3C validator |