Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kur14 Structured version   Visualization version   GIF version

Theorem kur14 34826
Description: Kuratowski's closure-complement theorem. There are at most 14 sets which can be obtained by the application of the closure and complement operations to a set in a topological space. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
kur14.x 𝑋 = 𝐽
kur14.k 𝐾 = (cls‘𝐽)
kur14.s 𝑆 = {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)}
Assertion
Ref Expression
kur14 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝑆 ∈ Fin ∧ (♯‘𝑆) ≤ 14))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐽,𝑦   𝑥,𝑋
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝐾(𝑥,𝑦)   𝑋(𝑦)

Proof of Theorem kur14
StepHypRef Expression
1 kur14.s . . . . . 6 𝑆 = {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)}
2 eleq1 2817 . . . . . . . . 9 (𝐴 = if(𝐴𝑋, 𝐴, ∅) → (𝐴𝑥 ↔ if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥))
32anbi1d 630 . . . . . . . 8 (𝐴 = if(𝐴𝑋, 𝐴, ∅) → ((𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥) ↔ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)))
43rabbidv 3437 . . . . . . 7 (𝐴 = if(𝐴𝑋, 𝐴, ∅) → {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)} = {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)})
54inteqd 4954 . . . . . 6 (𝐴 = if(𝐴𝑋, 𝐴, ∅) → {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)} = {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)})
61, 5eqtrid 2780 . . . . 5 (𝐴 = if(𝐴𝑋, 𝐴, ∅) → 𝑆 = {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)})
76eleq1d 2814 . . . 4 (𝐴 = if(𝐴𝑋, 𝐴, ∅) → (𝑆 ∈ Fin ↔ {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)} ∈ Fin))
86fveq2d 6901 . . . . 5 (𝐴 = if(𝐴𝑋, 𝐴, ∅) → (♯‘𝑆) = (♯‘ {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)}))
98breq1d 5158 . . . 4 (𝐴 = if(𝐴𝑋, 𝐴, ∅) → ((♯‘𝑆) ≤ 14 ↔ (♯‘ {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)}) ≤ 14))
107, 9anbi12d 631 . . 3 (𝐴 = if(𝐴𝑋, 𝐴, ∅) → ((𝑆 ∈ Fin ∧ (♯‘𝑆) ≤ 14) ↔ ( {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)} ∈ Fin ∧ (♯‘ {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)}) ≤ 14)))
11 kur14.x . . . . . . . . . 10 𝑋 = 𝐽
12 unieq 4919 . . . . . . . . . 10 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → 𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}))
1311, 12eqtrid 2780 . . . . . . . . 9 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → 𝑋 = if(𝐽 ∈ Top, 𝐽, {∅}))
1413pweqd 4620 . . . . . . . 8 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → 𝒫 𝑋 = 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}))
1514pweqd 4620 . . . . . . 7 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → 𝒫 𝒫 𝑋 = 𝒫 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}))
1613sseq2d 4012 . . . . . . . . . . 11 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → (𝐴𝑋𝐴 if(𝐽 ∈ Top, 𝐽, {∅})))
17 sn0top 22915 . . . . . . . . . . . . . 14 {∅} ∈ Top
1817elimel 4598 . . . . . . . . . . . . 13 if(𝐽 ∈ Top, 𝐽, {∅}) ∈ Top
19 uniexg 7745 . . . . . . . . . . . . 13 (if(𝐽 ∈ Top, 𝐽, {∅}) ∈ Top → if(𝐽 ∈ Top, 𝐽, {∅}) ∈ V)
2018, 19ax-mp 5 . . . . . . . . . . . 12 if(𝐽 ∈ Top, 𝐽, {∅}) ∈ V
2120elpw2 5347 . . . . . . . . . . 11 (𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}) ↔ 𝐴 if(𝐽 ∈ Top, 𝐽, {∅}))
2216, 21bitr4di 289 . . . . . . . . . 10 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → (𝐴𝑋𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅})))
2322ifbid 4552 . . . . . . . . 9 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → if(𝐴𝑋, 𝐴, ∅) = if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅))
2423eleq1d 2814 . . . . . . . 8 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ↔ if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝑥))
2513difeq1d 4119 . . . . . . . . . . 11 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → (𝑋𝑦) = ( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦))
26 kur14.k . . . . . . . . . . . . 13 𝐾 = (cls‘𝐽)
27 fveq2 6897 . . . . . . . . . . . . 13 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → (cls‘𝐽) = (cls‘if(𝐽 ∈ Top, 𝐽, {∅})))
2826, 27eqtrid 2780 . . . . . . . . . . . 12 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → 𝐾 = (cls‘if(𝐽 ∈ Top, 𝐽, {∅})))
2928fveq1d 6899 . . . . . . . . . . 11 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → (𝐾𝑦) = ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦))
3025, 29preq12d 4746 . . . . . . . . . 10 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → {(𝑋𝑦), (𝐾𝑦)} = {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)})
3130sseq1d 4011 . . . . . . . . 9 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → ({(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥 ↔ {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥))
3231ralbidv 3174 . . . . . . . 8 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → (∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥 ↔ ∀𝑦𝑥 {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥))
3324, 32anbi12d 631 . . . . . . 7 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → ((if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥) ↔ (if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)))
3415, 33rabeqbidv 3446 . . . . . 6 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)} = {𝑥 ∈ 𝒫 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)})
3534inteqd 4954 . . . . 5 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)} = {𝑥 ∈ 𝒫 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)})
3635eleq1d 2814 . . . 4 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → ( {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)} ∈ Fin ↔ {𝑥 ∈ 𝒫 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)} ∈ Fin))
3735fveq2d 6901 . . . . 5 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → (♯‘ {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)}) = (♯‘ {𝑥 ∈ 𝒫 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)}))
3837breq1d 5158 . . . 4 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → ((♯‘ {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)}) ≤ 14 ↔ (♯‘ {𝑥 ∈ 𝒫 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)}) ≤ 14))
3936, 38anbi12d 631 . . 3 (𝐽 = if(𝐽 ∈ Top, 𝐽, {∅}) → (( {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)} ∈ Fin ∧ (♯‘ {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (if(𝐴𝑋, 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {(𝑋𝑦), (𝐾𝑦)} ⊆ 𝑥)}) ≤ 14) ↔ ( {𝑥 ∈ 𝒫 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)} ∈ Fin ∧ (♯‘ {𝑥 ∈ 𝒫 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)}) ≤ 14)))
40 eqid 2728 . . . 4 if(𝐽 ∈ Top, 𝐽, {∅}) = if(𝐽 ∈ Top, 𝐽, {∅})
41 eqid 2728 . . . 4 (cls‘if(𝐽 ∈ Top, 𝐽, {∅})) = (cls‘if(𝐽 ∈ Top, 𝐽, {∅}))
42 eqid 2728 . . . 4 {𝑥 ∈ 𝒫 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)} = {𝑥 ∈ 𝒫 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)}
43 0elpw 5356 . . . . . 6 ∅ ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅})
4443elimel 4598 . . . . 5 if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅})
45 elpwi 4610 . . . . 5 (if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}) → if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ⊆ if(𝐽 ∈ Top, 𝐽, {∅}))
4644, 45ax-mp 5 . . . 4 if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ⊆ if(𝐽 ∈ Top, 𝐽, {∅})
4718, 40, 41, 42, 46kur14lem10 34825 . . 3 ( {𝑥 ∈ 𝒫 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)} ∈ Fin ∧ (♯‘ {𝑥 ∈ 𝒫 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}) ∣ (if(𝐴 ∈ 𝒫 if(𝐽 ∈ Top, 𝐽, {∅}), 𝐴, ∅) ∈ 𝑥 ∧ ∀𝑦𝑥 {( if(𝐽 ∈ Top, 𝐽, {∅}) ∖ 𝑦), ((cls‘if(𝐽 ∈ Top, 𝐽, {∅}))‘𝑦)} ⊆ 𝑥)}) ≤ 14)
4810, 39, 47dedth2h 4588 . 2 ((𝐴𝑋𝐽 ∈ Top) → (𝑆 ∈ Fin ∧ (♯‘𝑆) ≤ 14))
4948ancoms 458 1 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (𝑆 ∈ Fin ∧ (♯‘𝑆) ≤ 14))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wral 3058  {crab 3429  Vcvv 3471  cdif 3944  wss 3947  c0 4323  ifcif 4529  𝒫 cpw 4603  {csn 4629  {cpr 4631   cuni 4908   cint 4949   class class class wbr 5148  cfv 6548  Fincfn 8964  1c1 11140  cle 11280  4c4 12300  cdc 12708  chash 14322  Topctop 22808  clsccl 22935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-oadd 8491  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9925  df-card 9963  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-2 12306  df-3 12307  df-4 12308  df-5 12309  df-6 12310  df-7 12311  df-8 12312  df-9 12313  df-n0 12504  df-xnn0 12576  df-z 12590  df-dec 12709  df-uz 12854  df-fz 13518  df-hash 14323  df-top 22809  df-topon 22826  df-cld 22936  df-ntr 22937  df-cls 22938
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »