![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elimel | Structured version Visualization version GIF version |
Description: Eliminate a membership hypothesis for weak deduction theorem, when special case 𝐵 ∈ 𝐶 is provable. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
elimel.1 | ⊢ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
elimel | ⊢ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2817 | . 2 ⊢ (𝐴 = if(𝐴 ∈ 𝐶, 𝐴, 𝐵) → (𝐴 ∈ 𝐶 ↔ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶)) | |
2 | eleq1 2817 | . 2 ⊢ (𝐵 = if(𝐴 ∈ 𝐶, 𝐴, 𝐵) → (𝐵 ∈ 𝐶 ↔ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶)) | |
3 | elimel.1 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
4 | 1, 2, 3 | elimhyp 4597 | 1 ⊢ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 ifcif 4532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-if 4533 |
This theorem is referenced by: fprg 7170 orduninsuc 7853 oawordeu 8582 oeoa 8624 omopth 8689 unfilem3 9343 inar1 10806 supsr 11143 renegcl 11561 peano5uzti 12690 eluzaddOLD 12895 eluzsubOLD 12896 ltweuz 13966 uzenom 13969 seqfn 14018 seq1 14019 seqp1 14021 sqeqor 14219 binom2 14220 nn0opth2 14271 faclbnd4lem2 14293 hashxp 14433 dvdsle 16294 divalglem7 16383 divalg 16387 gcdaddm 16507 smadiadetr 22597 iblcnlem 25738 ax5seglem8 28767 elimnv 30513 elimnvu 30514 nmlno0i 30624 nmblolbi 30630 blocn 30637 elimphu 30651 ubth 30703 htth 30748 ifhvhv0 30852 normlem6 30945 norm-iii 30970 norm3lemt 30982 ifchhv 31074 hhssablo 31093 hhssnvt 31095 shscl 31148 shslej 31210 shincl 31211 omlsii 31233 pjoml 31266 pjoc2 31269 chm0 31321 chne0 31324 chocin 31325 chj0 31327 chlejb1 31342 chnle 31344 ledi 31370 h1datom 31412 cmbr3 31438 pjoml2 31441 cmcm 31444 cmcm3 31445 lecm 31447 pjmuli 31519 pjige0 31521 pjhfo 31536 pj11 31544 eigre 31665 eigorth 31668 hoddi 31820 nmlnop0 31828 lnopeq 31839 lnopunilem2 31841 nmbdoplb 31855 nmcopex 31859 nmcoplb 31860 lnopcon 31865 lnfn0 31877 lnfnmul 31878 nmcfnex 31883 nmcfnlb 31884 lnfncon 31886 riesz4 31894 riesz1 31895 cnlnadjeu 31908 pjhmop 31980 pjidmco 32011 mdslmd1lem3 32157 mdslmd1lem4 32158 csmdsymi 32164 hatomic 32190 atord 32218 atcvat2 32219 bnj941 34436 bnj944 34602 kur14 34859 abs2sqle 35317 abs2sqlt 35318 onsucconn 35955 onsucsuccmp 35961 sdclem1 37249 mnurnd 43751 bnd2d 48190 |
Copyright terms: Public domain | W3C validator |