Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsucconn Structured version   Visualization version   GIF version

Theorem onsucconn 36041
Description: A successor ordinal number is a connected topology. (Contributed by Chen-Pang He, 16-Oct-2015.)
Assertion
Ref Expression
onsucconn (𝐴 ∈ On → suc 𝐴 ∈ Conn)

Proof of Theorem onsucconn
StepHypRef Expression
1 suceq 6437 . . 3 (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → suc 𝐴 = suc if(𝐴 ∈ On, 𝐴, ∅))
21eleq1d 2810 . 2 (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → (suc 𝐴 ∈ Conn ↔ suc if(𝐴 ∈ On, 𝐴, ∅) ∈ Conn))
3 0elon 6425 . . . 4 ∅ ∈ On
43elimel 4599 . . 3 if(𝐴 ∈ On, 𝐴, ∅) ∈ On
54onsucconni 36040 . 2 suc if(𝐴 ∈ On, 𝐴, ∅) ∈ Conn
62, 5dedth 4588 1 (𝐴 ∈ On → suc 𝐴 ∈ Conn)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  c0 4322  ifcif 4530  Oncon0 6371  suc csuc 6373  Conncconn 23359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-ord 6374  df-on 6375  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-fv 6557  df-topgen 17428  df-top 22840  df-bases 22893  df-cld 22967  df-conn 23360
This theorem is referenced by:  ordtopconn  36042
  Copyright terms: Public domain W3C validator
OSZAR »