![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > blocn | Structured version Visualization version GIF version |
Description: A linear operator is continuous iff it is bounded. Theorem 2.7-9(a) of [Kreyszig] p. 97. (Contributed by NM, 25-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
blocn.8 | ⊢ 𝐶 = (IndMet‘𝑈) |
blocn.d | ⊢ 𝐷 = (IndMet‘𝑊) |
blocn.j | ⊢ 𝐽 = (MetOpen‘𝐶) |
blocn.k | ⊢ 𝐾 = (MetOpen‘𝐷) |
blocn.5 | ⊢ 𝐵 = (𝑈 BLnOp 𝑊) |
blocn.u | ⊢ 𝑈 ∈ NrmCVec |
blocn.w | ⊢ 𝑊 ∈ NrmCVec |
blocn.4 | ⊢ 𝐿 = (𝑈 LnOp 𝑊) |
Ref | Expression |
---|---|
blocn | ⊢ (𝑇 ∈ 𝐿 → (𝑇 ∈ (𝐽 Cn 𝐾) ↔ 𝑇 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2813 | . . 3 ⊢ (𝑇 = if(𝑇 ∈ 𝐿, 𝑇, (𝑈 0op 𝑊)) → (𝑇 ∈ (𝐽 Cn 𝐾) ↔ if(𝑇 ∈ 𝐿, 𝑇, (𝑈 0op 𝑊)) ∈ (𝐽 Cn 𝐾))) | |
2 | eleq1 2813 | . . 3 ⊢ (𝑇 = if(𝑇 ∈ 𝐿, 𝑇, (𝑈 0op 𝑊)) → (𝑇 ∈ 𝐵 ↔ if(𝑇 ∈ 𝐿, 𝑇, (𝑈 0op 𝑊)) ∈ 𝐵)) | |
3 | 1, 2 | bibi12d 344 | . 2 ⊢ (𝑇 = if(𝑇 ∈ 𝐿, 𝑇, (𝑈 0op 𝑊)) → ((𝑇 ∈ (𝐽 Cn 𝐾) ↔ 𝑇 ∈ 𝐵) ↔ (if(𝑇 ∈ 𝐿, 𝑇, (𝑈 0op 𝑊)) ∈ (𝐽 Cn 𝐾) ↔ if(𝑇 ∈ 𝐿, 𝑇, (𝑈 0op 𝑊)) ∈ 𝐵))) |
4 | blocn.8 | . . 3 ⊢ 𝐶 = (IndMet‘𝑈) | |
5 | blocn.d | . . 3 ⊢ 𝐷 = (IndMet‘𝑊) | |
6 | blocn.j | . . 3 ⊢ 𝐽 = (MetOpen‘𝐶) | |
7 | blocn.k | . . 3 ⊢ 𝐾 = (MetOpen‘𝐷) | |
8 | blocn.4 | . . 3 ⊢ 𝐿 = (𝑈 LnOp 𝑊) | |
9 | blocn.5 | . . 3 ⊢ 𝐵 = (𝑈 BLnOp 𝑊) | |
10 | blocn.u | . . 3 ⊢ 𝑈 ∈ NrmCVec | |
11 | blocn.w | . . 3 ⊢ 𝑊 ∈ NrmCVec | |
12 | eqid 2725 | . . . . . 6 ⊢ (𝑈 0op 𝑊) = (𝑈 0op 𝑊) | |
13 | 12, 8 | 0lno 30657 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑈 0op 𝑊) ∈ 𝐿) |
14 | 10, 11, 13 | mp2an 690 | . . . 4 ⊢ (𝑈 0op 𝑊) ∈ 𝐿 |
15 | 14 | elimel 4598 | . . 3 ⊢ if(𝑇 ∈ 𝐿, 𝑇, (𝑈 0op 𝑊)) ∈ 𝐿 |
16 | 4, 5, 6, 7, 8, 9, 10, 11, 15 | blocni 30672 | . 2 ⊢ (if(𝑇 ∈ 𝐿, 𝑇, (𝑈 0op 𝑊)) ∈ (𝐽 Cn 𝐾) ↔ if(𝑇 ∈ 𝐿, 𝑇, (𝑈 0op 𝑊)) ∈ 𝐵) |
17 | 3, 16 | dedth 4587 | 1 ⊢ (𝑇 ∈ 𝐿 → (𝑇 ∈ (𝐽 Cn 𝐾) ↔ 𝑇 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 ifcif 4529 ‘cfv 6547 (class class class)co 7417 MetOpencmopn 21274 Cn ccn 23159 NrmCVeccnv 30451 IndMetcims 30458 LnOp clno 30607 BLnOp cblo 30609 0op c0o 30610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 ax-addf 11217 ax-mulf 11218 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8723 df-map 8845 df-en 8963 df-dom 8964 df-sdom 8965 df-sup 9465 df-inf 9466 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-n0 12503 df-z 12589 df-uz 12853 df-q 12963 df-rp 13007 df-xneg 13124 df-xadd 13125 df-xmul 13126 df-seq 14000 df-exp 14060 df-cj 15079 df-re 15080 df-im 15081 df-sqrt 15215 df-abs 15216 df-topgen 17425 df-psmet 21276 df-xmet 21277 df-met 21278 df-bl 21279 df-mopn 21280 df-top 22827 df-topon 22844 df-bases 22880 df-cn 23162 df-cnp 23163 df-grpo 30360 df-gid 30361 df-ginv 30362 df-gdiv 30363 df-ablo 30412 df-vc 30426 df-nv 30459 df-va 30462 df-ba 30463 df-sm 30464 df-0v 30465 df-vs 30466 df-nmcv 30467 df-ims 30468 df-lno 30611 df-nmoo 30612 df-blo 30613 df-0o 30614 |
This theorem is referenced by: blocn2 30675 |
Copyright terms: Public domain | W3C validator |