![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjrdx | Structured version Visualization version GIF version |
Description: Re-index a disjunct collection statement. (Contributed by Thierry Arnoux, 7-Apr-2017.) |
Ref | Expression |
---|---|
disjrdx.1 | ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐶) |
disjrdx.2 | ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → 𝐷 = 𝐵) |
Ref | Expression |
---|---|
disjrdx | ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐶 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjrdx.1 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐶) | |
2 | f1of 6833 | . . . . . . 7 ⊢ (𝐹:𝐴–1-1-onto→𝐶 → 𝐹:𝐴⟶𝐶) | |
3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
4 | 3 | ffvelcdmda 7088 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐶) |
5 | f1ofveu 7408 | . . . . . . 7 ⊢ ((𝐹:𝐴–1-1-onto→𝐶 ∧ 𝑦 ∈ 𝐶) → ∃!𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦) | |
6 | 1, 5 | sylan 579 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → ∃!𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦) |
7 | eqcom 2735 | . . . . . . 7 ⊢ ((𝐹‘𝑥) = 𝑦 ↔ 𝑦 = (𝐹‘𝑥)) | |
8 | 7 | reubii 3381 | . . . . . 6 ⊢ (∃!𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 ↔ ∃!𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) |
9 | 6, 8 | sylib 217 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → ∃!𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) |
10 | disjrdx.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → 𝐷 = 𝐵) | |
11 | 10 | eleq2d 2815 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → (𝑧 ∈ 𝐷 ↔ 𝑧 ∈ 𝐵)) |
12 | 4, 9, 11 | rmoxfrd 32284 | . . . 4 ⊢ (𝜑 → (∃*𝑦 ∈ 𝐶 𝑧 ∈ 𝐷 ↔ ∃*𝑥 ∈ 𝐴 𝑧 ∈ 𝐵)) |
13 | 12 | bicomd 222 | . . 3 ⊢ (𝜑 → (∃*𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃*𝑦 ∈ 𝐶 𝑧 ∈ 𝐷)) |
14 | 13 | albidv 1916 | . 2 ⊢ (𝜑 → (∀𝑧∃*𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∀𝑧∃*𝑦 ∈ 𝐶 𝑧 ∈ 𝐷)) |
15 | df-disj 5108 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑧∃*𝑥 ∈ 𝐴 𝑧 ∈ 𝐵) | |
16 | df-disj 5108 | . 2 ⊢ (Disj 𝑦 ∈ 𝐶 𝐷 ↔ ∀𝑧∃*𝑦 ∈ 𝐶 𝑧 ∈ 𝐷) | |
17 | 14, 15, 16 | 3bitr4g 314 | 1 ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐶 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1532 = wceq 1534 ∈ wcel 2099 ∃!wreu 3370 ∃*wrmo 3371 Disj wdisj 5107 ⟶wf 6538 –1-1-onto→wf1o 6541 ‘cfv 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2937 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-disj 5108 df-br 5143 df-opab 5205 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 |
This theorem is referenced by: tocyccntz 32859 volmeas 33844 carsggect 33932 |
Copyright terms: Public domain | W3C validator |