![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmcoss3 | Structured version Visualization version GIF version |
Description: The domain of cosets is the domain of converse. (Contributed by Peter Mazsa, 4-Jan-2019.) |
Ref | Expression |
---|---|
dmcoss3 | ⊢ dom ≀ 𝑅 = dom ◡𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcoss3 37886 | . . 3 ⊢ ≀ 𝑅 = (𝑅 ∘ ◡𝑅) | |
2 | 1 | dmeqi 5907 | . 2 ⊢ dom ≀ 𝑅 = dom (𝑅 ∘ ◡𝑅) |
3 | rncnv 37772 | . . . 4 ⊢ ran ◡𝑅 = dom 𝑅 | |
4 | 3 | eqimssi 4040 | . . 3 ⊢ ran ◡𝑅 ⊆ dom 𝑅 |
5 | dmcosseq 5976 | . . 3 ⊢ (ran ◡𝑅 ⊆ dom 𝑅 → dom (𝑅 ∘ ◡𝑅) = dom ◡𝑅) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ dom (𝑅 ∘ ◡𝑅) = dom ◡𝑅 |
7 | 2, 6 | eqtri 2756 | 1 ⊢ dom ≀ 𝑅 = dom ◡𝑅 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ⊆ wss 3947 ◡ccnv 5677 dom cdm 5678 ran crn 5679 ∘ ccom 5682 ≀ ccoss 37648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-coss 37883 |
This theorem is referenced by: dmcoss2 37926 eldmcoss 37930 |
Copyright terms: Public domain | W3C validator |