Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmcoss3 Structured version   Visualization version   GIF version

Theorem dmcoss3 37925
Description: The domain of cosets is the domain of converse. (Contributed by Peter Mazsa, 4-Jan-2019.)
Assertion
Ref Expression
dmcoss3 dom ≀ 𝑅 = dom 𝑅

Proof of Theorem dmcoss3
StepHypRef Expression
1 dfcoss3 37886 . . 3 𝑅 = (𝑅𝑅)
21dmeqi 5907 . 2 dom ≀ 𝑅 = dom (𝑅𝑅)
3 rncnv 37772 . . . 4 ran 𝑅 = dom 𝑅
43eqimssi 4040 . . 3 ran 𝑅 ⊆ dom 𝑅
5 dmcosseq 5976 . . 3 (ran 𝑅 ⊆ dom 𝑅 → dom (𝑅𝑅) = dom 𝑅)
64, 5ax-mp 5 . 2 dom (𝑅𝑅) = dom 𝑅
72, 6eqtri 2756 1 dom ≀ 𝑅 = dom 𝑅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wss 3947  ccnv 5677  dom cdm 5678  ran crn 5679  ccom 5682  ccoss 37648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5149  df-opab 5211  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-coss 37883
This theorem is referenced by:  dmcoss2  37926  eldmcoss  37930
  Copyright terms: Public domain W3C validator
OSZAR »