![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > br1cossxrncnvepres | Structured version Visualization version GIF version |
Description: 〈𝐵, 𝐶〉 and 〈𝐷, 𝐸〉 are cosets by a range Cartesian product with the restricted converse epsilon class: a binary relation. (Contributed by Peter Mazsa, 12-May-2021.) |
Ref | Expression |
---|---|
br1cossxrncnvepres | ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (◡ E ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝐶 ∈ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ∈ 𝑢 ∧ 𝑢𝑅𝐷)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | br1cossxrnres 37924 | . 2 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (◡ E ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝑢◡ E 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢◡ E 𝐸 ∧ 𝑢𝑅𝐷)))) | |
2 | brcnvep 37741 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢◡ E 𝐶 ↔ 𝐶 ∈ 𝑢)) | |
3 | 2 | elv 3477 | . . . . 5 ⊢ (𝑢◡ E 𝐶 ↔ 𝐶 ∈ 𝑢) |
4 | 3 | anbi1i 622 | . . . 4 ⊢ ((𝑢◡ E 𝐶 ∧ 𝑢𝑅𝐵) ↔ (𝐶 ∈ 𝑢 ∧ 𝑢𝑅𝐵)) |
5 | brcnvep 37741 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢◡ E 𝐸 ↔ 𝐸 ∈ 𝑢)) | |
6 | 5 | elv 3477 | . . . . 5 ⊢ (𝑢◡ E 𝐸 ↔ 𝐸 ∈ 𝑢) |
7 | 6 | anbi1i 622 | . . . 4 ⊢ ((𝑢◡ E 𝐸 ∧ 𝑢𝑅𝐷) ↔ (𝐸 ∈ 𝑢 ∧ 𝑢𝑅𝐷)) |
8 | 4, 7 | anbi12i 626 | . . 3 ⊢ (((𝑢◡ E 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢◡ E 𝐸 ∧ 𝑢𝑅𝐷)) ↔ ((𝐶 ∈ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ∈ 𝑢 ∧ 𝑢𝑅𝐷))) |
9 | 8 | rexbii 3090 | . 2 ⊢ (∃𝑢 ∈ 𝐴 ((𝑢◡ E 𝐶 ∧ 𝑢𝑅𝐵) ∧ (𝑢◡ E 𝐸 ∧ 𝑢𝑅𝐷)) ↔ ∃𝑢 ∈ 𝐴 ((𝐶 ∈ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ∈ 𝑢 ∧ 𝑢𝑅𝐷))) |
10 | 1, 9 | bitrdi 286 | 1 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) ∧ (𝐷 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌)) → (〈𝐵, 𝐶〉 ≀ (𝑅 ⋉ (◡ E ↾ 𝐴))〈𝐷, 𝐸〉 ↔ ∃𝑢 ∈ 𝐴 ((𝐶 ∈ 𝑢 ∧ 𝑢𝑅𝐵) ∧ (𝐸 ∈ 𝑢 ∧ 𝑢𝑅𝐷)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2098 ∃wrex 3066 Vcvv 3471 〈cop 4636 class class class wbr 5150 E cep 5583 ◡ccnv 5679 ↾ cres 5682 ⋉ cxrn 37652 ≀ ccoss 37653 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pr 5431 ax-un 7744 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-eprel 5584 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-fo 6557 df-fv 6559 df-1st 7997 df-2nd 7998 df-xrn 37847 df-coss 37887 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |