![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ecin0 | Structured version Visualization version GIF version |
Description: Two ways of saying that the coset of 𝐴 and the coset of 𝐵 have no elements in common. (Contributed by Peter Mazsa, 1-Dec-2018.) |
Ref | Expression |
---|---|
ecin0 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ↔ ∀𝑥(𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disj1 4451 | . 2 ⊢ (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ↔ ∀𝑥(𝑥 ∈ [𝐴]𝑅 → ¬ 𝑥 ∈ [𝐵]𝑅)) | |
2 | elecg 8767 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝑥)) | |
3 | 2 | el2v1 37690 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝑥)) |
4 | 3 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝑥)) |
5 | elecALTV 37738 | . . . . . . 7 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑥 ∈ V) → (𝑥 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝑥)) | |
6 | 5 | elvd 3478 | . . . . . 6 ⊢ (𝐵 ∈ 𝑊 → (𝑥 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝑥)) |
7 | 6 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝑥)) |
8 | 7 | notbid 318 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (¬ 𝑥 ∈ [𝐵]𝑅 ↔ ¬ 𝐵𝑅𝑥)) |
9 | 4, 8 | imbi12d 344 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝑥 ∈ [𝐴]𝑅 → ¬ 𝑥 ∈ [𝐵]𝑅) ↔ (𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥))) |
10 | 9 | albidv 1916 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥(𝑥 ∈ [𝐴]𝑅 → ¬ 𝑥 ∈ [𝐵]𝑅) ↔ ∀𝑥(𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥))) |
11 | 1, 10 | bitrid 283 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ↔ ∀𝑥(𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1532 = wceq 1534 ∈ wcel 2099 Vcvv 3471 ∩ cin 3946 ∅c0 4323 class class class wbr 5148 [cec 8722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-xp 5684 df-cnv 5686 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-ec 8726 |
This theorem is referenced by: ecinn0 37825 |
Copyright terms: Public domain | W3C validator |