Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ecin0 Structured version   Visualization version   GIF version

Theorem ecin0 37824
Description: Two ways of saying that the coset of 𝐴 and the coset of 𝐵 have no elements in common. (Contributed by Peter Mazsa, 1-Dec-2018.)
Assertion
Ref Expression
ecin0 ((𝐴𝑉𝐵𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ↔ ∀𝑥(𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑉   𝑥,𝑊

Proof of Theorem ecin0
StepHypRef Expression
1 disj1 4451 . 2 (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ↔ ∀𝑥(𝑥 ∈ [𝐴]𝑅 → ¬ 𝑥 ∈ [𝐵]𝑅))
2 elecg 8767 . . . . . 6 ((𝑥 ∈ V ∧ 𝐴𝑉) → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
32el2v1 37690 . . . . 5 (𝐴𝑉 → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
43adantr 480 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
5 elecALTV 37738 . . . . . . 7 ((𝐵𝑊𝑥 ∈ V) → (𝑥 ∈ [𝐵]𝑅𝐵𝑅𝑥))
65elvd 3478 . . . . . 6 (𝐵𝑊 → (𝑥 ∈ [𝐵]𝑅𝐵𝑅𝑥))
76adantl 481 . . . . 5 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ [𝐵]𝑅𝐵𝑅𝑥))
87notbid 318 . . . 4 ((𝐴𝑉𝐵𝑊) → (¬ 𝑥 ∈ [𝐵]𝑅 ↔ ¬ 𝐵𝑅𝑥))
94, 8imbi12d 344 . . 3 ((𝐴𝑉𝐵𝑊) → ((𝑥 ∈ [𝐴]𝑅 → ¬ 𝑥 ∈ [𝐵]𝑅) ↔ (𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥)))
109albidv 1916 . 2 ((𝐴𝑉𝐵𝑊) → (∀𝑥(𝑥 ∈ [𝐴]𝑅 → ¬ 𝑥 ∈ [𝐵]𝑅) ↔ ∀𝑥(𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥)))
111, 10bitrid 283 1 ((𝐴𝑉𝐵𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ↔ ∀𝑥(𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wal 1532   = wceq 1534  wcel 2099  Vcvv 3471  cin 3946  c0 4323   class class class wbr 5148  [cec 8722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5149  df-opab 5211  df-xp 5684  df-cnv 5686  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-ec 8726
This theorem is referenced by:  ecinn0  37825
  Copyright terms: Public domain W3C validator
OSZAR »