![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ecinn0 | Structured version Visualization version GIF version |
Description: Two ways of saying that the coset of 𝐴 and the coset of 𝐵 have some elements in common. (Contributed by Peter Mazsa, 23-Jan-2019.) |
Ref | Expression |
---|---|
ecinn0 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅ ↔ ∃𝑥(𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecin0 37824 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ↔ ∀𝑥(𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥))) | |
2 | 1 | necon3abid 2974 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅ ↔ ¬ ∀𝑥(𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥))) |
3 | notnotb 315 | . . . . 5 ⊢ (𝐵𝑅𝑥 ↔ ¬ ¬ 𝐵𝑅𝑥) | |
4 | 3 | anbi2i 622 | . . . 4 ⊢ ((𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥) ↔ (𝐴𝑅𝑥 ∧ ¬ ¬ 𝐵𝑅𝑥)) |
5 | 4 | exbii 1843 | . . 3 ⊢ (∃𝑥(𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥) ↔ ∃𝑥(𝐴𝑅𝑥 ∧ ¬ ¬ 𝐵𝑅𝑥)) |
6 | exanali 1855 | . . 3 ⊢ (∃𝑥(𝐴𝑅𝑥 ∧ ¬ ¬ 𝐵𝑅𝑥) ↔ ¬ ∀𝑥(𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥)) | |
7 | 5, 6 | bitri 275 | . 2 ⊢ (∃𝑥(𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥) ↔ ¬ ∀𝑥(𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥)) |
8 | 2, 7 | bitr4di 289 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅ ↔ ∃𝑥(𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1532 ∃wex 1774 ∈ wcel 2099 ≠ wne 2937 ∩ cin 3946 ∅c0 4323 class class class wbr 5148 [cec 8723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-xp 5684 df-cnv 5686 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-ec 8727 |
This theorem is referenced by: disjecxrn 37861 brcoss3 37905 brcosscnv2 37945 |
Copyright terms: Public domain | W3C validator |