Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsetpreimafv Structured version   Visualization version   GIF version

Theorem elsetpreimafv 46788
Description: An element of the class 𝑃 of all preimages of function values. (Contributed by AV, 8-Mar-2024.)
Hypothesis
Ref Expression
setpreimafvex.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
Assertion
Ref Expression
elsetpreimafv (𝑆𝑃 → ∃𝑥𝐴 𝑆 = (𝐹 “ {(𝐹𝑥)}))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝑥,𝑆,𝑧
Allowed substitution hints:   𝑃(𝑥,𝑧)

Proof of Theorem elsetpreimafv
StepHypRef Expression
1 setpreimafvex.p . . 3 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
21elsetpreimafvb 46787 . 2 (𝑆𝑃 → (𝑆𝑃 ↔ ∃𝑥𝐴 𝑆 = (𝐹 “ {(𝐹𝑥)})))
32ibi 266 1 (𝑆𝑃 → ∃𝑥𝐴 𝑆 = (𝐹 “ {(𝐹𝑥)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  {cab 2702  wrex 3060  {csn 4624  ccnv 5671  cima 5675  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-rex 3061
This theorem is referenced by:  elsetpreimafvssdm  46789  fvelsetpreimafv  46790  elsetpreimafvbi  46794  imasetpreimafvbijlemfo  46808
  Copyright terms: Public domain W3C validator
OSZAR »