Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsetpreimafvbi Structured version   Visualization version   GIF version

Theorem elsetpreimafvbi 46733
Description: An element of the preimage of a function value is an element of the domain of the function with the same value as another element of the preimage. (Contributed by AV, 9-Mar-2024.)
Hypothesis
Ref Expression
setpreimafvex.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
Assertion
Ref Expression
elsetpreimafvbi ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (𝑌𝑆 ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝑥,𝑆,𝑧   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝑃(𝑥,𝑧)   𝑋(𝑧)   𝑌(𝑧)

Proof of Theorem elsetpreimafvbi
StepHypRef Expression
1 fniniseg 7072 . . . . . 6 (𝐹 Fn 𝐴 → (𝑋 ∈ (𝐹 “ {(𝐹𝑥)}) ↔ (𝑋𝐴 ∧ (𝐹𝑋) = (𝐹𝑥))))
2 fniniseg 7072 . . . . . . . . 9 (𝐹 Fn 𝐴 → (𝑌 ∈ (𝐹 “ {(𝐹𝑥)}) ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑥))))
3 eqeq2 2739 . . . . . . . . . . 11 ((𝐹𝑥) = (𝐹𝑋) → ((𝐹𝑌) = (𝐹𝑥) ↔ (𝐹𝑌) = (𝐹𝑋)))
43anbi2d 628 . . . . . . . . . 10 ((𝐹𝑥) = (𝐹𝑋) → ((𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑥)) ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))))
54eqcoms 2735 . . . . . . . . 9 ((𝐹𝑋) = (𝐹𝑥) → ((𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑥)) ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))))
62, 5sylan9bb 508 . . . . . . . 8 ((𝐹 Fn 𝐴 ∧ (𝐹𝑋) = (𝐹𝑥)) → (𝑌 ∈ (𝐹 “ {(𝐹𝑥)}) ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))))
76ex 411 . . . . . . 7 (𝐹 Fn 𝐴 → ((𝐹𝑋) = (𝐹𝑥) → (𝑌 ∈ (𝐹 “ {(𝐹𝑥)}) ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋)))))
87adantld 489 . . . . . 6 (𝐹 Fn 𝐴 → ((𝑋𝐴 ∧ (𝐹𝑋) = (𝐹𝑥)) → (𝑌 ∈ (𝐹 “ {(𝐹𝑥)}) ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋)))))
91, 8sylbid 239 . . . . 5 (𝐹 Fn 𝐴 → (𝑋 ∈ (𝐹 “ {(𝐹𝑥)}) → (𝑌 ∈ (𝐹 “ {(𝐹𝑥)}) ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋)))))
10 eleq2 2817 . . . . . 6 (𝑆 = (𝐹 “ {(𝐹𝑥)}) → (𝑋𝑆𝑋 ∈ (𝐹 “ {(𝐹𝑥)})))
11 eleq2 2817 . . . . . . 7 (𝑆 = (𝐹 “ {(𝐹𝑥)}) → (𝑌𝑆𝑌 ∈ (𝐹 “ {(𝐹𝑥)})))
1211bibi1d 342 . . . . . 6 (𝑆 = (𝐹 “ {(𝐹𝑥)}) → ((𝑌𝑆 ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))) ↔ (𝑌 ∈ (𝐹 “ {(𝐹𝑥)}) ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋)))))
1310, 12imbi12d 343 . . . . 5 (𝑆 = (𝐹 “ {(𝐹𝑥)}) → ((𝑋𝑆 → (𝑌𝑆 ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋)))) ↔ (𝑋 ∈ (𝐹 “ {(𝐹𝑥)}) → (𝑌 ∈ (𝐹 “ {(𝐹𝑥)}) ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))))))
149, 13imbitrrid 245 . . . 4 (𝑆 = (𝐹 “ {(𝐹𝑥)}) → (𝐹 Fn 𝐴 → (𝑋𝑆 → (𝑌𝑆 ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))))))
1514rexlimivw 3147 . . 3 (∃𝑥𝐴 𝑆 = (𝐹 “ {(𝐹𝑥)}) → (𝐹 Fn 𝐴 → (𝑋𝑆 → (𝑌𝑆 ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))))))
16 setpreimafvex.p . . . 4 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
1716elsetpreimafv 46727 . . 3 (𝑆𝑃 → ∃𝑥𝐴 𝑆 = (𝐹 “ {(𝐹𝑥)}))
1815, 17syl11 33 . 2 (𝐹 Fn 𝐴 → (𝑆𝑃 → (𝑋𝑆 → (𝑌𝑆 ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))))))
19183imp 1108 1 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (𝑌𝑆 ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  {cab 2704  wrex 3066  {csn 4630  ccnv 5679  cima 5683   Fn wfn 6546  cfv 6551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pr 5431
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-br 5151  df-opab 5213  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-iota 6503  df-fun 6553  df-fn 6554  df-fv 6559
This theorem is referenced by:  elsetpreimafveqfv  46734  eqfvelsetpreimafv  46735  elsetpreimafvrab  46736  imaelsetpreimafv  46737
  Copyright terms: Public domain W3C validator
OSZAR »