Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqfvelsetpreimafv Structured version   Visualization version   GIF version

Theorem eqfvelsetpreimafv 46812
Description: If an element of the domain of the function has the same function value as an element of the preimage of a function value, then it is an element of the same preimage. (Contributed by AV, 9-Mar-2024.)
Hypothesis
Ref Expression
setpreimafvex.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
Assertion
Ref Expression
eqfvelsetpreimafv ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → ((𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋)) → 𝑌𝑆))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝑥,𝑆,𝑧   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝑃(𝑥,𝑧)   𝑋(𝑧)   𝑌(𝑧)

Proof of Theorem eqfvelsetpreimafv
StepHypRef Expression
1 setpreimafvex.p . . 3 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
21elsetpreimafvbi 46810 . 2 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → (𝑌𝑆 ↔ (𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋))))
32biimprd 247 1 ((𝐹 Fn 𝐴𝑆𝑃𝑋𝑆) → ((𝑌𝐴 ∧ (𝐹𝑌) = (𝐹𝑋)) → 𝑌𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  {cab 2702  wrex 3060  {csn 4629  ccnv 5676  cima 5680   Fn wfn 6542  cfv 6547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6499  df-fun 6549  df-fn 6550  df-fv 6555
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »