![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylan9bb | Structured version Visualization version GIF version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
Ref | Expression |
---|---|
sylan9bb.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
sylan9bb.2 | ⊢ (𝜃 → (𝜒 ↔ 𝜏)) |
Ref | Expression |
---|---|
sylan9bb | ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9bb.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜒)) |
3 | sylan9bb.2 | . . 3 ⊢ (𝜃 → (𝜒 ↔ 𝜏)) | |
4 | 3 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜒 ↔ 𝜏)) |
5 | 2, 4 | bitrd 279 | 1 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 ↔ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: sylan9bbr 510 baibd 539 syl3an9b 1431 nanbi12 1497 sbcom2 2163 2sb5rf 2467 2sb6rf 2468 eqeqan12d 2742 eqeq12OLD 2747 eleq12 2819 sbhypfOLD 3537 ceqsrex2v 3644 elabd2 3658 sseq12 4007 csbie2df 4441 2ralsng 4681 rexprgf 4698 rextpg 4704 breq12 5153 reusv2lem5 5402 opelopabg 5540 brabg 5541 opelopabgf 5542 opelopab2 5543 rbropapd 5566 ralxpf 5849 feq23 6706 f00 6779 fconstg 6784 f1oeq23 6830 f1o00 6874 fnelfp 7184 fnelnfp 7186 isofrlem 7348 f1oiso 7359 riota1a 7399 cbvmpox 7513 caovord 7632 caovord3 7634 f1oweALT 7976 oaordex 8578 oaass 8581 odi 8599 findcard2s 9189 unfilem1 9334 suppeqfsuppbi 9402 oieu 9562 r1pw 9868 carddomi2 9993 isacn 10067 djudom2 10206 axdc2 10472 alephval2 10595 fpwwe2cbv 10653 fpwwe2lem2 10655 fpwwecbv 10667 fpwwelem 10668 canthwelem 10673 canthwe 10674 distrlem4pr 11049 axpre-sup 11192 nn0ind-raph 12692 elpq 12989 xnn0xadd0 13258 elfz 13522 elfzp12 13612 expeq0 14089 leiso 14452 wrd2ind 14705 trcleq12lem 14972 dfrtrclrec2 15037 shftfib 15051 absdvdsb 16251 dvdsabsb 16252 dvdsabseq 16289 unbenlem 16876 isprs 18288 isdrs 18292 pltval 18323 lublecllem 18351 istos 18409 isdlat 18513 znfld 21493 tgss2 22889 isopn2 22935 cnpf2 23153 lmbr 23161 isreg2 23280 fclsrest 23927 qustgplem 24024 ustuqtoplem 24143 xmetec 24339 nmogelb 24632 metdstri 24766 tcphcph 25164 ulmval 26315 2lgslem1a 27323 elmade 27793 iscgrg 28315 istrlson 29520 ispthson 29555 isspthson 29556 elwwlks2on 29769 eupth2lem1 30027 eigrei 31643 eigorthi 31646 jplem1 32077 superpos 32163 chrelati 32173 br8d 32399 issiga 33731 eulerpartlemgvv 33996 cplgredgex 34730 acycgrcycl 34757 br8 35350 br6 35351 br4 35352 brsegle 35704 topfne 35838 tailfb 35861 filnetlem1 35862 nndivsub 35941 bj-elequ12 36155 bj-rest10 36567 isbasisrelowllem1 36834 isbasisrelowllem2 36835 fvineqsnf1 36889 wl-2sb6d 37025 curf 37071 curunc 37075 poimirlem26 37119 mblfinlem2 37131 cnambfre 37141 itgaddnclem2 37152 ftc1anclem1 37166 grpokerinj 37366 rngoisoval 37450 smprngopr 37525 parteq12 38248 ax12eq 38413 ax12el 38414 2llnjN 39040 2lplnj 39093 elpadd0 39282 lauteq 39568 lpolconN 40960 f1o2d2 41724 rexrabdioph 42214 tfsnfin 42781 eliunov2 43109 nzss 43754 iotasbc2 43857 or2expropbilem2 46415 elsetpreimafvbi 46731 reuopreuprim 46866 cbvmpox2 47399 naryfvalel 47703 line2x 47827 |
Copyright terms: Public domain | W3C validator |