Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issiga Structured version   Visualization version   GIF version

Theorem issiga 33736
Description: An alternative definition of the sigma-algebra, for a given base set. (Contributed by Thierry Arnoux, 19-Sep-2016.)
Assertion
Ref Expression
issiga (𝑆 ∈ V → (𝑆 ∈ (sigAlgebra‘𝑂) ↔ (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
Distinct variable groups:   𝑥,𝑂   𝑥,𝑆

Proof of Theorem issiga
Dummy variables 𝑜 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6938 . . . 4 (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑂 ∈ V)
2 elex 3490 . . . 4 (𝑆 ∈ (sigAlgebra‘𝑂) → 𝑆 ∈ V)
31, 2jca 510 . . 3 (𝑆 ∈ (sigAlgebra‘𝑂) → (𝑂 ∈ V ∧ 𝑆 ∈ V))
43a1i 11 . 2 (𝑆 ∈ V → (𝑆 ∈ (sigAlgebra‘𝑂) → (𝑂 ∈ V ∧ 𝑆 ∈ V)))
5 simpr1 1191 . . . . 5 ((𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → 𝑂𝑆)
6 elex 3490 . . . . 5 (𝑂𝑆𝑂 ∈ V)
75, 6syl 17 . . . 4 ((𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → 𝑂 ∈ V)
87a1i 11 . . 3 (𝑆 ∈ V → ((𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → 𝑂 ∈ V))
98anc2ri 555 . 2 (𝑆 ∈ V → ((𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))) → (𝑂 ∈ V ∧ 𝑆 ∈ V)))
10 df-siga 33733 . . . 4 sigAlgebra = (𝑜 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠)))})
11 sigaex 33734 . . . 4 {𝑠 ∣ (𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠)))} ∈ V
12 pweq 4618 . . . . . . 7 (𝑜 = 𝑂 → 𝒫 𝑜 = 𝒫 𝑂)
1312sseq2d 4012 . . . . . 6 (𝑜 = 𝑂 → (𝑠 ⊆ 𝒫 𝑜𝑠 ⊆ 𝒫 𝑂))
14 sseq1 4005 . . . . . 6 (𝑠 = 𝑆 → (𝑠 ⊆ 𝒫 𝑂𝑆 ⊆ 𝒫 𝑂))
1513, 14sylan9bb 508 . . . . 5 ((𝑜 = 𝑂𝑠 = 𝑆) → (𝑠 ⊆ 𝒫 𝑜𝑆 ⊆ 𝒫 𝑂))
16 eleq12 2818 . . . . . 6 ((𝑜 = 𝑂𝑠 = 𝑆) → (𝑜𝑠𝑂𝑆))
17 simpr 483 . . . . . . 7 ((𝑜 = 𝑂𝑠 = 𝑆) → 𝑠 = 𝑆)
18 difeq1 4113 . . . . . . . . . 10 (𝑜 = 𝑂 → (𝑜𝑥) = (𝑂𝑥))
1918adantr 479 . . . . . . . . 9 ((𝑜 = 𝑂𝑠 = 𝑆) → (𝑜𝑥) = (𝑂𝑥))
2019eleq1d 2813 . . . . . . . 8 ((𝑜 = 𝑂𝑠 = 𝑆) → ((𝑜𝑥) ∈ 𝑠 ↔ (𝑂𝑥) ∈ 𝑠))
21 eleq2 2817 . . . . . . . . 9 (𝑠 = 𝑆 → ((𝑂𝑥) ∈ 𝑠 ↔ (𝑂𝑥) ∈ 𝑆))
2221adantl 480 . . . . . . . 8 ((𝑜 = 𝑂𝑠 = 𝑆) → ((𝑂𝑥) ∈ 𝑠 ↔ (𝑂𝑥) ∈ 𝑆))
2320, 22bitrd 278 . . . . . . 7 ((𝑜 = 𝑂𝑠 = 𝑆) → ((𝑜𝑥) ∈ 𝑠 ↔ (𝑂𝑥) ∈ 𝑆))
2417, 23raleqbidv 3338 . . . . . 6 ((𝑜 = 𝑂𝑠 = 𝑆) → (∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ↔ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆))
25 pweq 4618 . . . . . . . 8 (𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆)
26 eleq2 2817 . . . . . . . . 9 (𝑠 = 𝑆 → ( 𝑥𝑠 𝑥𝑆))
2726imbi2d 339 . . . . . . . 8 (𝑠 = 𝑆 → ((𝑥 ≼ ω → 𝑥𝑠) ↔ (𝑥 ≼ ω → 𝑥𝑆)))
2825, 27raleqbidv 3338 . . . . . . 7 (𝑠 = 𝑆 → (∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠) ↔ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))
2928adantl 480 . . . . . 6 ((𝑜 = 𝑂𝑠 = 𝑆) → (∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠) ↔ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))
3016, 24, 293anbi123d 1432 . . . . 5 ((𝑜 = 𝑂𝑠 = 𝑆) → ((𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠)) ↔ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))
3115, 30anbi12d 630 . . . 4 ((𝑜 = 𝑂𝑠 = 𝑆) → ((𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠))) ↔ (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
3210, 11, 31abfmpel 32459 . . 3 ((𝑂 ∈ V ∧ 𝑆 ∈ V) → (𝑆 ∈ (sigAlgebra‘𝑂) ↔ (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
3332a1i 11 . 2 (𝑆 ∈ V → ((𝑂 ∈ V ∧ 𝑆 ∈ V) → (𝑆 ∈ (sigAlgebra‘𝑂) ↔ (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆))))))
344, 9, 33pm5.21ndd 378 1 (𝑆 ∈ V → (𝑆 ∈ (sigAlgebra‘𝑂) ↔ (𝑆 ⊆ 𝒫 𝑂 ∧ (𝑂𝑆 ∧ ∀𝑥𝑆 (𝑂𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → 𝑥𝑆)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3057  Vcvv 3471  cdif 3944  wss 3947  𝒫 cpw 4604   cuni 4910   class class class wbr 5150  cfv 6551  ωcom 7874  cdom 8966  sigAlgebracsiga 33732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-iota 6503  df-fun 6553  df-fv 6559  df-siga 33733
This theorem is referenced by:  baselsiga  33739  sigasspw  33740  issgon  33747  isrnsigau  33751  dmvlsiga  33753  pwsiga  33754  prsiga  33755  sigainb  33760  insiga  33761  sigapildsys  33786  imambfm  33887  carsgsiga  33947
  Copyright terms: Public domain W3C validator
OSZAR »