![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > baselsiga | Structured version Visualization version GIF version |
Description: A sigma-algebra contains its base universe set. (Contributed by Thierry Arnoux, 26-Oct-2016.) |
Ref | Expression |
---|---|
baselsiga | ⊢ (𝑆 ∈ (sigAlgebra‘𝐴) → 𝐴 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3490 | . 2 ⊢ (𝑆 ∈ (sigAlgebra‘𝐴) → 𝑆 ∈ V) | |
2 | issiga 33731 | . . . 4 ⊢ (𝑆 ∈ V → (𝑆 ∈ (sigAlgebra‘𝐴) ↔ (𝑆 ⊆ 𝒫 𝐴 ∧ (𝐴 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝐴 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))))) | |
3 | 2 | simplbda 499 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝑆 ∈ (sigAlgebra‘𝐴)) → (𝐴 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝐴 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆(𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆))) |
4 | 3 | simp1d 1140 | . 2 ⊢ ((𝑆 ∈ V ∧ 𝑆 ∈ (sigAlgebra‘𝐴)) → 𝐴 ∈ 𝑆) |
5 | 1, 4 | mpancom 687 | 1 ⊢ (𝑆 ∈ (sigAlgebra‘𝐴) → 𝐴 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2099 ∀wral 3058 Vcvv 3471 ∖ cdif 3944 ⊆ wss 3947 𝒫 cpw 4603 ∪ cuni 4908 class class class wbr 5148 ‘cfv 6548 ωcom 7870 ≼ cdom 8962 sigAlgebracsiga 33727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6500 df-fun 6550 df-fv 6556 df-siga 33728 |
This theorem is referenced by: unielsiga 33747 sigaldsys 33778 cldssbrsiga 33806 1stmbfm 33880 2ndmbfm 33881 unveldomd 34035 probmeasb 34050 dstrvprob 34091 |
Copyright terms: Public domain | W3C validator |