![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > topfne | Structured version Visualization version GIF version |
Description: Fineness for covers corresponds precisely with fineness for topologies. (Contributed by Jeff Hankins, 29-Sep-2009.) |
Ref | Expression |
---|---|
topfne.1 | ⊢ 𝑋 = ∪ 𝐽 |
topfne.2 | ⊢ 𝑌 = ∪ 𝐾 |
Ref | Expression |
---|---|
topfne | ⊢ ((𝐾 ∈ Top ∧ 𝑋 = 𝑌) → (𝐽 ⊆ 𝐾 ↔ 𝐽Fne𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgtop 22894 | . . . 4 ⊢ (𝐾 ∈ Top → (topGen‘𝐾) = 𝐾) | |
2 | 1 | sseq2d 4012 | . . 3 ⊢ (𝐾 ∈ Top → (𝐽 ⊆ (topGen‘𝐾) ↔ 𝐽 ⊆ 𝐾)) |
3 | 2 | bicomd 222 | . 2 ⊢ (𝐾 ∈ Top → (𝐽 ⊆ 𝐾 ↔ 𝐽 ⊆ (topGen‘𝐾))) |
4 | topfne.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
5 | topfne.2 | . . . 4 ⊢ 𝑌 = ∪ 𝐾 | |
6 | 4, 5 | isfne4 35829 | . . 3 ⊢ (𝐽Fne𝐾 ↔ (𝑋 = 𝑌 ∧ 𝐽 ⊆ (topGen‘𝐾))) |
7 | 6 | baibr 535 | . 2 ⊢ (𝑋 = 𝑌 → (𝐽 ⊆ (topGen‘𝐾) ↔ 𝐽Fne𝐾)) |
8 | 3, 7 | sylan9bb 508 | 1 ⊢ ((𝐾 ∈ Top ∧ 𝑋 = 𝑌) → (𝐽 ⊆ 𝐾 ↔ 𝐽Fne𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ⊆ wss 3947 ∪ cuni 4910 class class class wbr 5150 ‘cfv 6551 topGenctg 17424 Topctop 22813 Fnecfne 35825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-iota 6503 df-fun 6553 df-fv 6559 df-topgen 17430 df-top 22814 df-fne 35826 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |