Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  topfne Structured version   Visualization version   GIF version

Theorem topfne 35843
Description: Fineness for covers corresponds precisely with fineness for topologies. (Contributed by Jeff Hankins, 29-Sep-2009.)
Hypotheses
Ref Expression
topfne.1 𝑋 = 𝐽
topfne.2 𝑌 = 𝐾
Assertion
Ref Expression
topfne ((𝐾 ∈ Top ∧ 𝑋 = 𝑌) → (𝐽𝐾𝐽Fne𝐾))

Proof of Theorem topfne
StepHypRef Expression
1 tgtop 22894 . . . 4 (𝐾 ∈ Top → (topGen‘𝐾) = 𝐾)
21sseq2d 4012 . . 3 (𝐾 ∈ Top → (𝐽 ⊆ (topGen‘𝐾) ↔ 𝐽𝐾))
32bicomd 222 . 2 (𝐾 ∈ Top → (𝐽𝐾𝐽 ⊆ (topGen‘𝐾)))
4 topfne.1 . . . 4 𝑋 = 𝐽
5 topfne.2 . . . 4 𝑌 = 𝐾
64, 5isfne4 35829 . . 3 (𝐽Fne𝐾 ↔ (𝑋 = 𝑌𝐽 ⊆ (topGen‘𝐾)))
76baibr 535 . 2 (𝑋 = 𝑌 → (𝐽 ⊆ (topGen‘𝐾) ↔ 𝐽Fne𝐾))
83, 7sylan9bb 508 1 ((𝐾 ∈ Top ∧ 𝑋 = 𝑌) → (𝐽𝐾𝐽Fne𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wss 3947   cuni 4910   class class class wbr 5150  cfv 6551  topGenctg 17424  Topctop 22813  Fnecfne 35825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-iota 6503  df-fun 6553  df-fv 6559  df-topgen 17430  df-top 22814  df-fne 35826
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator
OSZAR »