Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elsetpreimafvssdm Structured version   Visualization version   GIF version

Theorem elsetpreimafvssdm 46863
Description: An element of the class 𝑃 of all preimages of function values is a subset of the domain of the function. (Contributed by AV, 8-Mar-2024.)
Hypothesis
Ref Expression
setpreimafvex.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
Assertion
Ref Expression
elsetpreimafvssdm ((𝐹 Fn 𝐴𝑆𝑃) → 𝑆𝐴)
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝑥,𝑆,𝑧
Allowed substitution hints:   𝑃(𝑥,𝑧)

Proof of Theorem elsetpreimafvssdm
StepHypRef Expression
1 setpreimafvex.p . . . 4 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
21elsetpreimafv 46862 . . 3 (𝑆𝑃 → ∃𝑥𝐴 𝑆 = (𝐹 “ {(𝐹𝑥)}))
3 cnvimass 6086 . . . . . . . . 9 (𝐹 “ {(𝐹𝑥)}) ⊆ dom 𝐹
4 fndm 6658 . . . . . . . . 9 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
53, 4sseqtrid 4029 . . . . . . . 8 (𝐹 Fn 𝐴 → (𝐹 “ {(𝐹𝑥)}) ⊆ 𝐴)
65adantr 479 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → (𝐹 “ {(𝐹𝑥)}) ⊆ 𝐴)
7 sseq1 4002 . . . . . . 7 (𝑆 = (𝐹 “ {(𝐹𝑥)}) → (𝑆𝐴 ↔ (𝐹 “ {(𝐹𝑥)}) ⊆ 𝐴))
86, 7syl5ibrcom 246 . . . . . 6 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑆 = (𝐹 “ {(𝐹𝑥)}) → 𝑆𝐴))
98expcom 412 . . . . 5 (𝑥𝐴 → (𝐹 Fn 𝐴 → (𝑆 = (𝐹 “ {(𝐹𝑥)}) → 𝑆𝐴)))
109com23 86 . . . 4 (𝑥𝐴 → (𝑆 = (𝐹 “ {(𝐹𝑥)}) → (𝐹 Fn 𝐴𝑆𝐴)))
1110rexlimiv 3137 . . 3 (∃𝑥𝐴 𝑆 = (𝐹 “ {(𝐹𝑥)}) → (𝐹 Fn 𝐴𝑆𝐴))
122, 11syl 17 . 2 (𝑆𝑃 → (𝐹 Fn 𝐴𝑆𝐴))
1312impcom 406 1 ((𝐹 Fn 𝐴𝑆𝑃) → 𝑆𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  {cab 2702  wrex 3059  wss 3944  {csn 4630  ccnv 5677  dom cdm 5678  cima 5681   Fn wfn 6544  cfv 6549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5150  df-opab 5212  df-xp 5684  df-cnv 5686  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-fn 6552
This theorem is referenced by:  preimafvsspwdm  46866  uniimaelsetpreimafv  46873
  Copyright terms: Public domain W3C validator
OSZAR »