![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnimasnd | Structured version Visualization version GIF version |
Description: The image of a function by a singleton whose element is in the domain of the function. (Contributed by Steven Nguyen, 7-Jun-2023.) |
Ref | Expression |
---|---|
fnimasnd.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
fnimasnd.2 | ⊢ (𝜑 → 𝑆 ∈ 𝐴) |
Ref | Expression |
---|---|
fnimasnd | ⊢ (𝜑 → (𝐹 “ {𝑆}) = {(𝐹‘𝑆)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnimasnd.1 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | fnimasnd.2 | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝐴) | |
3 | fnsnfv 6977 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ∈ 𝐴) → {(𝐹‘𝑆)} = (𝐹 “ {𝑆})) | |
4 | 1, 2, 3 | syl2anc 583 | . 2 ⊢ (𝜑 → {(𝐹‘𝑆)} = (𝐹 “ {𝑆})) |
5 | 4 | eqcomd 2734 | 1 ⊢ (𝜑 → (𝐹 “ {𝑆}) = {(𝐹‘𝑆)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 {csn 4629 “ cima 5681 Fn wfn 6543 ‘cfv 6548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-fv 6556 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |