![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnresi | Structured version Visualization version GIF version |
Description: The restricted identity relation is a function on the restricting class. (Contributed by NM, 27-Aug-2004.) (Proof shortened by BJ, 27-Dec-2023.) |
Ref | Expression |
---|---|
fnresi | ⊢ ( I ↾ 𝐴) Fn 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idfn 6688 | . 2 ⊢ I Fn V | |
2 | ssv 4006 | . 2 ⊢ 𝐴 ⊆ V | |
3 | fnssres 6683 | . 2 ⊢ (( I Fn V ∧ 𝐴 ⊆ V) → ( I ↾ 𝐴) Fn 𝐴) | |
4 | 1, 2, 3 | mp2an 690 | 1 ⊢ ( I ↾ 𝐴) Fn 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3473 ⊆ wss 3949 I cid 5579 ↾ cres 5684 Fn wfn 6548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5153 df-opab 5215 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-res 5694 df-fun 6555 df-fn 6556 |
This theorem is referenced by: f1oi 6882 fninfp 7189 fndifnfp 7191 fnnfpeq0 7193 fveqf1o 7318 weniso 7368 iordsmo 8384 fipreima 9390 dfac9 10167 smndex1n0mnd 18871 pmtrfinv 19423 psdmplcl 22093 ustuqtop3 24168 fta1blem 26125 qaa 26278 dfiop2 31583 symgcom2 32828 tocycfvres1 32852 tocycfvres2 32853 cvmliftlem4 34931 cvmliftlem5 34932 poimirlem15 37141 poimirlem22 37148 ltrnid 39640 dvsid 43799 dflinc2 47556 |
Copyright terms: Public domain | W3C validator |