MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idfn Structured version   Visualization version   GIF version

Theorem idfn 6686
Description: The identity relation is a function on the universal class. See also funi 6588. (Contributed by BJ, 23-Dec-2023.)
Assertion
Ref Expression
idfn I Fn V

Proof of Theorem idfn
StepHypRef Expression
1 funi 6588 . 2 Fun I
2 dmi 5926 . 2 dom I = V
3 df-fn 6554 . 2 ( I Fn V ↔ (Fun I ∧ dom I = V))
41, 2, 3mpbir2an 709 1 I Fn V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  Vcvv 3471   I cid 5577  dom cdm 5680  Fun wfun 6545   Fn wfn 6546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pr 5431
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2705  df-cleq 2719  df-clel 2805  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5151  df-opab 5213  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-fun 6553  df-fn 6554
This theorem is referenced by:  fnresi  6687
  Copyright terms: Public domain W3C validator
OSZAR »